
Parallel Programming
with CUDA Fortran

© NVIDIA Corporation 2011

Outline

What is CUDA Fortran
Simple Examples
CUDA Fortran Features
Using CUBLAS with CUDA Fortran
Compilation

© NVIDIA Corporation 2011

CUDA Fortran

CUDA is a scalable programming model for parallel computing

CUDA Fortran is the Fortran analog of CUDA C
Program host and device code similar to CUDA C
Host code is based on Runtime API
Fortran language extensions to simplify data management

Co-defined by NVIDIA and PGI, implemented in the PGI Fortran
compiler

Separate from PGI Accelerator
Directive-based, OpenMP-like interface to CUDA

© NVIDIA Corporation 2011

CUDA Programming

Heterogeneous programming model
CPU and GPU are separate devices with separate memory spaces
Host code runs on the CPU

Handles data management for both the host and device
Launches kernels which are subroutines executed on the GPU

Device code runs on the GPU
Executed by many GPU threads in parallel

Allows for incremental development

© NVIDIA Corporation 2011

F90 Example

module simpleOps_m
contains
 subroutine inc(a, b)
 implicit none
 integer :: a(:)
 integer :: b
 integer :: i, n

 n = size(a)
 do i = 1, n
 a(i) = a(i)+b
 enddo

 end subroutine inc
end module simpleOps_m

program incTest
 use simpleOps_m
 implicit none
 integer, parameter :: n = 256
 integer :: a(n), b

 a = 1 ! array assignment
 b = 3
 call inc(a, b)

 if (all(a == 4)) then
 write(*,*) 'Success'
 endif

end program incTest

© NVIDIA Corporation 2011

CUDA Fortran - Host Code

CUDA Fortran
program incTest
 use cudafor
 use simpleOps_m
 implicit none
 integer, parameter :: n = 256
 integer :: a(n), b
 integer, device :: a_d(n)

 a = 1
 b = 3

 a_d = a
 call inc<<<1,n>>>(a_d, b)
 a = a_d

 if (all(a == 4)) then
 write(*,*) 'Success'
 endif
end program incTest

F90
program incTest

 use simpleOps_m
 implicit none
 integer, parameter :: n = 256
 integer :: a(n), b

 a = 1
 b = 3

 call inc(a, b)

 if (all(a == 4)) then
 write(*,*) 'Success'
 endif
end program incTest

© NVIDIA Corporation 2011

CUDA Fortran - Device Code

CUDA Fortran

module simpleOps_m
contains
 attributes(global) subroutine inc(a, b)
 implicit none
 integer :: a(:)
 integer, value :: b
 integer :: i

 i = threadIdx%x
 a(i) = a(i)+b

 end subroutine inc
end module simpleOps_m

F90

module simpleOps_m
contains
 subroutine inc(a, b)
 implicit none
 integer :: a(:)
 integer :: b
 integer :: i, n

 n = size(a)
 do i = 1, n
 a(i) = a(i)+b
 enddo

 end subroutine inc
end module simpleOps_m

© NVIDIA Corporation 2011

Extending to Larger Arrays

Previous example works for small arrays

Limit of n=1024 (Fermi) or n=512 (pre-Fermi)

For larger arrays, change the first Execution Configuration
parameter (<<<1,n>>>)

call inc<<<1,n>>>(a_d,b)

© NVIDIA Corporation 2011

Execution Model

...

Thread
Thread

Processor

Thread
Block Multiprocessor

Grid
Device

Software
Threads are executed by thread processors

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on a
multiprocessor

Hardware

A kernel is launched on a device as a
grid of thread blocks

© NVIDIA Corporation 2011

Execution Configuration

Execution configuration specified on host code

Previous example used a single thread block

Multiple threads blocks

call inc<<<blocksPerGrid, threadsPerBlock>>>(a_d,b)

call inc<<<1,n>>>(a_d,b)

tPB = 256
call inc<<<ceiling(real(n)/tPB),tPB>>>(a_d,b)

© NVIDIA Corporation 2011

Large Array - Host Code
program incTest
 use cudafor
 use simpleOps_m
 implicit none
 integer, parameter :: n = 1024*1024
 integer, parameter :: tPB = 256
 integer :: a(n), b
 integer, device :: a_d(n)

 a = 1
 b = 3

 a_d = a
 call inc<<<ceiling(real(n)/tPB),tPB>>>(a_d, b)
 a = a_d

 if (all(a == 4)) then
 write(*,*) 'Success'
 endif
end program incTest

© NVIDIA Corporation 2011

Large Array - Device Code

module simpleOps_m
contains
 attributes(global) subroutine inc(a, b)
 implicit none
 integer :: a(:)
 integer, value :: b
 integer :: i, n

 i = (blockIdx%x-1)*blockDim%x + threadIdx%x
 n = size(a)
 if (i <= n) a(i) = a(i)+b

 end subroutine inc
end module simpleOps_m

© NVIDIA Corporation 2011

Multidimensional Arrays - Host

Execution Configuration

Grid dimensions in blocks (blocksPerGrid) and block dimensions
(threadsPerBlock) can be either integer or of type dim3

call inc<<<blocksPerGrid, threadsPerBlock>>>(a_d,b)

type (dim3)
 integer (kind=4) :: x, y, z
end type

© NVIDIA Corporation 2011

Multidimensional Arrays - Device

Predefined variables in device subroutines
Grid and block dimensions - gridDim, blockDim
Block and thread indices - blockIdx, threadIdx
Of type dim3

blockIdx and threadIdx fields have unit offset

type (dim3)
 integer (kind=4) :: x, y, z
end type

1 <= blockIdx%x <= gridDim%x

© NVIDIA Corporation 2011

2D Example - Host Code
program incTest
 use cudafor
 use simpleOps_m
 implicit none
 integer, parameter :: nx=1024, ny=512
 real :: a(nx,ny), b
 real, device :: a_d(nx,ny)
 type(dim3) :: grid, tBlock

 a = 1; b = 3

 tBlock = dim3(32,8,1)
 grid = dim3(ceiling(real(nx)/tBlock%x), ceiling(real(ny)/tBlock%y), 1)
 a_d = a
 call inc<<<grid,tBlock>>>(a_d, b)
 a = a_d

 write(*,*) 'Max error: ', maxval(abs(a-4))
end program incTest

© NVIDIA Corporation 2011

2D Example - Device Code

module simpleOps_m
contains
 attributes(global) subroutine inc(a, b)
 implicit none
 real :: a(:,:)
 real, value :: b
 integer :: i, j

 i = (blockIdx%x-1)*blockDim%x + threadIdx%x
 j = (blockIdx%y-1)*blockDim%y + threadIdx%y

 if (i<=size(a,1) .and. j<=size(a,2)) &
 a(i,j) = a(i,j) + b

 end subroutine inc
end module simpleOps_m

© NVIDIA Corporation 2011

CUDA Fortran Features

Variable Qualifiers
Subroutine/Function Qualifiers
Kernel Loop Directives (CUF Kernels)

© NVIDIA Corporation 2011

Variable Qualifiers

Analogous to CUDA C
device
constant

Read-only memory (device code) cached on-chip
shared

On-chip, shared between threads of a thread block

Additional
pinned

Page-locked host memory
value

Pass-by-value dummy arguments in device code

Textures will be available in 12.0

© NVIDIA Corporation 2011

Function/Subroutine Qualifiers

Designated by attributes() specifier
attributes(host)

called from host and runs on host (default)
attributes(global)

kernel, called from host runs on device
subroutine only
no other prefixes allowed (recursive, elemental, or pure)

attributes(device)
called from and runs on device
can only appear within a Fortran module
only additional prefix allowed is function return type

© NVIDIA Corporation 2011

Kernel Loop Directives (CUF Kernels)

Automatic kernel generation and invocation of host code region
containing tightly nested loops

Can specify parts of execution configuration

!$cuf kernel do(2) <<< *,* >>>
do j=1, ny
 do i = 1, nx
 a_d(i,j) = b_d(i,j) + c_d(i,j)
 enddo
enddo

!$cuf kernel do(2) <<<(*,*),(32,4)>>>

© NVIDIA Corporation 2011

Reduction using CUF Kernels

Compiler recognizes use of scalar reduction and generates one
result

rsum = 0.0
!$cuf kernel do <<<*,*>>>
do i = 1, nx
 rsum = rsum + a_d(i)
enddo

© NVIDIA Corporation 2011

Calling CUBLAS from CUDA Fortran

Module which defines interfaces to CUBLAS from CUDA Fortran
use cublas

Interfaces in three forms
Overloaded BLAS interfaces that take device array arguments

call saxpy(n, a_d, x_d, incx, y_d, incy)

Legacy CUBLAS interfaces
call cublasSaxpy(n, a_d, x_d, incx, y_d, incy)

Multi-GPU version (CUDA 4.0) that utilizes a handle h
istat = cublasSaxpy_v2(h, n, a_d, x_d, incx, y_d, incy)

Mixing the three forms is allowed

© NVIDIA Corporation 2011

Calling CUBLAS from CUDA Fortran
program cublasTest
 use cublas
 implicit none

 real, allocatable :: a(:,:),b(:,:),c(:,:)
 real, device, allocatable :: a_d(:,:),b_d(:,:),c_d(:,:)
 integer :: k=4, m=4, n=4
 real :: alpha=1.0, beta=2.0, maxError

 allocate(a(m,k), b(k,n), c(m,n), a_d(m,k), b_d(k,n), c_d(m,n))

 a = 1; a_d = a
 b = 2; b_d = b
 c = 3; c_d = c

 call cublasSgemm('N','N',m,n,k,alpha,a_d,m,b_d,k,beta,c_d,m)

 c=c_d
 write(*,*) 'Maximum error: ', maxval(abs(c-14.0))

 deallocate (a,b,c,a_d,b_d,c_d)

end program cublasTest

© NVIDIA Corporation 2011

Compilation

Source-to-source compilation (generates CUDA C)
pgfortran - PGI’s Fortran compiler
All source code with .cuf or .CUF is compiled as CUDA Fortran enabled
automatically
Flag to target architecture (eg. -Mcuda=cc20)

-Mcuda=emu specifies emulation mode
Flag to target toolkit version (eg. -Mcuda=cuda4.0)
-Mcuda=fastmath enables faster intrinsics (__sinf())
-Mcuda=nofma turns off fused multiply-add
-Mcuda=maxregcount:<n> limits register use per thread
-Mcuda=ptxinfo prints memory usage per kernel

© NVIDIA Corporation 2011

Summary

CUDA Fortran provides a convenient interface for parallel
programming
Fortran analog to CUDA C

CUDA Fortran has strong typing that allows simplified data management
Fortran 90’s array features carried to GPU

More info available at
http://www.pgroup.com/cudafortran

http://www.pgroup.com/cudafortran
http://www.pgroup.com/cudafortran

Parallel Programming
with CUDA Fortran

© NVIDIA Corporation 2011

Runtime API (Host)

Runtime API defined in cudafor module
Device management (cudaGetDeviceCount, cudaSetDevice, ...)
Host-device synchronization (cudaDeviceSynchronize)
Memory management (cudaMalloc/cudaFree, cudaMemcpy,
cudaMemcpyAsync, ...)

Mixing cudaMalloc/cudaFree with Fortran allocate/deallocate on a
given array is not supported
For device data, counts are in units of elements, not bytes

Stream management (cudaStreamCreate, cudaStreamSynchronize, ...)
Event management (cudaEventCreate, cudaEventRecord, ...)
Error handling (cudaGetLastError, ...)

© NVIDIA Corporation 2011

Device Intrinsics

syncthreads subroutine
Barrier synchronization for all threads in thread block

gpu_time subroutine
Returns value of clock cycle counter on GPU

Atomic functions

