11
ran

th CUDA Fort

Wi

Parallel Progra

<A NVIDIA.

Outline <X

nvibDiA

* What is CUDA Fortran
* Simple Examples
* CUDA Fortran Features

* Using CUBLAS with CUDA Fortran
* Compilation

© NVIDIA Corporation 2011

CUDA Fortran <3

nvibDiA

CUDA is a scalable programming model for parallel computing

CUDA Fortran is the Fortran analog of CUDA C

Program host and device code similar to CUDA C
Host code is based on Runtime API
Fortran language extensions to simplify data management

* Co-defined by NVIDIA and PGI, implemented in the PGI Fortran
compiler

Separate from PGI Accelerator
* Directive-based, OpenMP-like interface to CUDA

© NVIDIA Corporation 2011

CUDA Programming >

nvibDiA

* Heterogeneous programming model
CPU and GPU are separate devices with separate memory spaces
® Host code runs on the CPU

Handles data management for both the host and device
Launches kernels which are subroutines executed on the GPU

Device code runs on the GPU
* Executed by many GPU threads in parallel
* Allows for incremental development

© NVIDIA Corporation 2011

F90 Example

module simpleOps m
contains
subroutine inc(a, b)
implicit none

integer :: a(:)
integer :: b
integer :: i, n
n = size(a)
doi=1, n

a(i) = a(i)+b
enddo

end subroutine inc
end module simpleOps m

© NVIDIA Corporation 2011

>

nVvIDIA

program incTest

use simpleOps m

implicit none

integer, parameter :: n = 256
integer :: a(n), b

=1 ! array assignment
= 3
all inc(a, b)

if (all(a == 4)) then
write(*,*) 'Success'
endif

end program incTest

CUDA Fortran - Host Code

CUDA Fortran

program incTest
use cudafor
use simpleOps m
implicit none

integer, parameter :: n = 256
integer :: a(n), b

integer, device :: a_d(n)
a=1

b=3

ad=a

call inc<<<1l,n>>>(a_d, b)
a=ad

if (all(a == 4)) then
write(*,*) 'Success'
endif
end program incTest

© NVIDIA Corporation 2011

F90

program incTest

use simpleOps m
implicit none

integer, parameter :: n = 256
integer :: a(n), b

a=1

b =3

call inc(a, b)

if (all(a == 4)) then
write(*,*) 'Success'
endif
end program incTest

<3

nVvIDIA

CUDA Fortran - Device Code <3

nVvIDIA

CUDA Fortran F90
module simpleOps m module simpleOps m
contains contains
attributes (global) subroutine inc(a, b) subroutine inc(a, b)
implicit none implicit none
integer :: a(:) integer :: a(:)
integer, value :: b integer :: b
integer :: 1i integer :: i, n
i = threadIdx%$x n = size(a)
a(i) = a(i)+b do i=1, n
a(i) = a(i)+b
enddo
end subroutine inc end subroutine inc

end module simpleOps m end module simpleOps m

© NVIDIA Corporation 2011

Extending to Larger Arrays <3

nviDIA

* Previous example works for small arrays
call inc<<<l,n>>>(a _d,b)
® Limit of n=1024 (Fermi) or n=512 (pre-Fermi)

* For larger arrays, change the first Execution Configuration
parameter (<<<1,n>>>)

© NVIDIA Corporation 2011

Execution Model

Software Hardware
[]
Thread
Thread Processor
—
Thread
Block Multiprocessor

Grid

© NVIDIA Corporation 2011

Device

>

nVIDIA

Threads are executed by thread processors

Thread blocks are executed on multiprocessors
Thread blocks do not migrate

Several concurrent thread blocks can reside on a
multiprocessor

A kernel is launched on a device as a
grid of thread blocks

Execution Configuration <3

nviDIA

* Execution configuration specified on host code

call inc<<<blocksPerGrid, threadsPerBlock>>>(a _d, b)
* Previous example used a single thread block

call inc<<<l,n>>>(a _d,b)
¢ Multiple threads blocks

tPB = 256
call inc<<<ceiling(real(n)/tPB) ,tPB>>>(a _d,b)

© NVIDIA Corporation 2011

Large Array - Host Code <3

nVvIDIA

program incTest
use cudafor
use simpleOps m
implicit none
integer, parameter :: n = 1024*1024

integer, parameter :: tPB = 256

integer :: a(n), b

integer, device :: a d(n)

a=1

b =3

ad=a

call inc<<<cei1ing(rea1(n)/tPB),tPB>>>(a_d, b)
a=ad

if (all(a == 4)) then
write(*,*) 'Success'
endif
end program incTest

© NVIDIA Corporation 2011

Large Array - Device Code <3

nvinia

module simpleOps m
contains
attributes (global) subroutine inc(a, b)
implicit none

integer :: a(:)

integer, value :: b

integer :: i, n

i = (blockIdx%x-1)*blockDim%$x + threadIdx%$x
n = size(a)

if (1 <= n) a(i) = a(1)+b

end subroutine inc
end module simpleOps m

© NVIDIA Corporation 2011

Multidimensional Arrays - Host >

nvinia

* Execution Configuration

call inc<<<blocksPerGrid, threadsPerBlock>>>(a d, b)

® Grid dimensions in blocks (blocksPerGrid) and block dimensions
(threadsPerBlock) can be either integer or of type dim3

type (dim3)
integer (kind=4) :: x, y, z
end type

© NVIDIA Corporation 2011

Multidimensional Arrays - Device

* Predefined variables in device subroutines
Grid and block dimensions - gridDim, blockDim

Block and thread indices - blockIdx, threadIdx
Of type dim3

»

D)

D)

type (dim3)
integer (kind=4) :: x, y, z
end type

»

blockIdx and threadIdx fields have unit offset

1 <=blockIdx%x <= gridDim%x

© NVIDIA Corporation 2011

<3

nVvIDIA

2D Example - Host Code <3

nvinia

program incTest
use cudafor
use simpleOps m
implicit none
integer, parameter :: nx=1024, ny=512

real :: a(nx,ny), b
real, device :: a _d(nx,ny)
type (dim3) :: grid, tBlock

a=1;, b=3

tBlock = dim3(32,8,1)
grid = dim3 (ceiling(real (nx) /tBlock%x), ceiling(real (ny)/tBlock%y), 1)

ad=a

call inc<<<grid, tBlock>>>(a d, b)

a=ad

write(*,*) 'Max error: ', maxval (abs(a-4))

end program incTest

© NVIDIA Corporation 2011

2D Example - Device Code

module simpleOps m
contains
attributes (global) subroutine inc(a, b)
implicit none
real :: a(:,:)
real, value :: b
integer :: i, j

i
J

(blockIdx%$x-1) *blockDim%x + threadIdx%x
(blockIdx%y-1) *blockDim%y + threadIdx3%y

if (i<=size(a,l) .and. j<=size(a,2)) &
a(i,j) = a(i,j) + b

end subroutine inc
end module simpleOps m

© NVIDIA Corporation 2011

<3

nVvIDIA

CUDA Fortran Features <X

nvinia

® Variable Qualifiers
® Subroutine/Function Qualifiers
* Kernel Loop Directives (CUF Kernels)

© NVIDIA Corporation 2011

Variable Qualifiers <X

nviDIA

* Analogous to CUDAC

® device
® constant
* Read-only memory (device code) cached on-chip

¢ shared
® On-chip, shared between threads of a thread block
* Additional

pinned
* Page-locked host memory
® wvalue
¢ Pass-by-value dummy arguments in device code

¢ Textures will be available in 12.0

© NVIDIA Corporation 2011

Function/Subroutine Qualifiers

* Designated by attributes () specifier

® attributes (host)

¢ called from host and runs on host (default)
¢ attributes (global)

¢ Kkernel, called from host runs on device

¢ subroutine only

® no other prefixes allowed (recursive, elemental, or pure)
® attributes (device)

¢ called from and runs on device
¢ can only appear within a Fortran module
* only additional prefix allowed is function return type

© NVIDIA Corporation 2011

=

nviDIA

Kernel Loop Directives (CUF Kernels) <3

nVvIDIA

* Automatic kernel generation and invocation of host code region
containing tightly nested loops

1Scuf kernel do(2) <<< *,* >>>
do j=1, ny
do 1 =1, nx
a d(i,j) = b d(i,]) + c d(i,3)
enddo
enddo

Can specify parts of execution configuration

1Scuf kernel do(2) <<<(*,*), (32,4)>>>

© NVIDIA Corporation 2011

Reduction using CUF Kernels <3

nvinia

* Compiler recognizes use of scalar reduction and generates one
result

rsum = 0.0
1Scuf kernel do <<<*, *>>>
do i =1, nx

rsum = rsum + a d(i)
enddo

© NVIDIA Corporation 2011

Calling CUBLAS from CUDA Fortran >

nviDIA

* Module which defines interfaces to CUBLAS from CUDA Fortran

® use cublas

* Interfaces in three forms

* Overloaded BLAS interfaces that take device array arguments
® call saxpy(n, a d, x d, incx, y d, incy)
Legacy CUBLAS interfaces
call cublasSaxpy(n, a d, x d, incx, y d, incy)

® Multi-GPU version (CUDA 4.0) that utilizes a handle h

® istat = cublasSaxpy v2(h, n, a d, x d, incx, y d, incy)

® Mixing the three forms is allowed

© NVIDIA Corporation 2011

Calling CUBLAS from CUDA Fortran >

nvinia

program cublasTest
use cublas
implicit none

real, allocatable :: a(:,:),b(:,:),c(:,:)

real, device, allocatable :: a d(:,:),b d(:,:),c_d(:,:)
integer :: k=4, m=4, n=4

real :: alpha=1.0, beta=2.0, maxError

allocate(a(m,k), b(k,n), c(m,n), a d(m,k), b d(k,n), c _d(m,n))

a=1; ad-=a
b=2;bd=»>b
c =3, cd=c

call cublasSgemm('N','N',m,n,k,alpha,a d,m,b d,k,beta,c _d,m)

c=c d
write(*,*) 'Maximum error: ', maxval (abs(c-14.0))

deallocate (a,b,c,a d,b d,c_d)

end program cublasTest

© NVIDIA Corporation 2011

Compilation >

nvibDiA

* Source-to-source compilation (generates CUDA C)
* pgfortran - PGI’s Fortran compiler

All source code with .cuf or .CUF is compiled as CUDA Fortran enabled
automatically

Flag to target architecture (eg. -Mcuda=cc20)
® -Mcuda=emu specifies emulation mode

Flag to target toolkit version (eg. ~-Mcuda=cuda4.0)

® -Mcuda=fastmath enables faster intrinsics (__ _sinf ())
-Mcuda=nofma turns off fused multiply-add
-Mcuda=maxregcount :<n> limits register use per thread
-Mcuda=ptxinfo prints memory usage per kernel

© NVIDIA Corporation 2011

Summary >

nvibDiA

CUDA Fortran provides a convenient interface for parallel
programming
Fortran analog to CUDA C

CUDA Fortran has strong typing that allows simplified data management
Fortran 90’s array features carried to GPU

* More info available at
http://www.pgroup.com/cudafortran

© NVIDIA Corporation 2011

http://www.pgroup.com/cudafortran
http://www.pgroup.com/cudafortran

11
ran

th CUDA Fort

Wi

Parallel Progra

<A NVIDIA.

Runtime API (Host) >

nVvIDIA

* Runtime API defined in cudafor module
* Device management (cudaGetDeviceCount, cudaSetDevice, ...)
» Host-device synchronization (cudaDeviceSynchronize)

®* Memory management (cudaMalloc/cudaFree, cudaMemcpy,
cudaMemcpyAsync, ...)

® Mixing cudaMalloc/cudaFree with Fortran allocate/deallocate on a
given array is not supported
® For device data, counts are in units of elements, not bytes

Stream management (cudaStreamCreate, cudaStreamSynchronize, ...)
* Event management (cudaEventCreate, cudaEventRecord, ...)

)

¢ Error handling (cudaGetLastError, ...)

© NVIDIA Corporation 2011

Device Intrinsics <X

nviDIA

® syncthreads subroutine

® Barrier synchronization for all threads in thread block
® gpu_time subroutine

® Returns value of clock cycle counter on GPU

® Atomic functions

© NVIDIA Corporation 2011

