
1

Optimising the Graphics PipelineOptimising the Graphics Pipeline
Koji Ashida

Hi. My name is Koji Ashida. I'm part of the developer technology group at
NVIDIA and we are the guys who tend to assist game developers in creating
new effects, optimizing their graphics engine and taking care of bugs.
Today, I'm going to talk to you about optimizing the graphics pipeline.

2

Overview

GPUCPU
application

potential bottlenecks

driver

The bottleneck determines overall throughput
In general, the bottleneck varies over the course of an
application and even over a frame
For pipeline architectures, getting good performance is all
about finding and eliminating bottlenecks

We're going to go through all the stages of the GPU plus talk a little bit about
what happens on the CPU side that can bottleneck a graphics application.
As we all know, in order to render a scene, the application which is running
on the CPU must send data and instructions across to the device. It
communicates with the device through the driver. Then, once the device has
the data, it processes the data using the graphics chip itself, and finally
writes it out to the frame buffer. Because this whole process is a single
pipeline from the CPU to the last stage of the GPU, any one of those stages
can be a potential bottleneck. The good thing about a pipeline is that it's
very efficient and, in particular, it's very efficient at rendering graphics
because it can parallelize a lot of operations. The bad thing about a pipeline
is that, once you do have a bottleneck, then the whole pipeline is running at
that speed so you really want to basically level off all your stages in the
pipeline such that they have equal workloads. Hopefully, by the end of this
presentation, you'll have a very good idea of how to either reduce the
workload on a certain stage or at least increase the workload on the other
stage such that you're getting better visual quality.

3

Locating and eliminating bottlenecks

Location: For each stage
Vary its workload

Measurable impact on overall performance?
Clock down

Measurable impact on overall performance?

Elimination:
Decrease workload of bottleneck:

Increase workload of
non-bottleneck stages:

workload

workload

workload

Now, please remember that, for any given scene, you're going to have
different bottlenecks for different objects, different materials, different parts of
the scene and so it can be fairly difficult to find where the impact is. Now,
you do have two choices once you've identified the bottleneck. One thing
you can do is try to reduce the overall workload of that stage and thereby
increasing the frame rates or what you can do is increase the workload of all
the other stages and, therefore, increasing the visual quality. Now, you want
to choose which one you do, depending on your target frame rate so, if the
application is already running at 80 frames per second, you may, instead of
seeking to run at 100 frames per second, increase the workload on the other
stages. The basic theory that we're going to use is that we're going to step
through each stage and vary its workload. If it is the bottleneck, then the
overall frame rate's going to change. If it isn't, then we're going to see no
difference, supposedly.

4

On-Chip Cache MemoryVideo Memory

System
Memory

Rasterization

Graphics rendering pipeline

CPU

Vertex
Shading

(T&L)

Triangle
Setup

Fragment
Shading

and
Raster

Operations

Textures

Frame Buffer

Geometry

Commands

pre-TnL
cache

post-TnL cache

texture
cache

This is an overall view of the graphics pipeline. To the far left, we see the
CPU, which is where the application and driver are going to be running, and
the CPU is communicating with the graphics device through the AGP bus.
These days, we have AGP8X, so it's running pretty fast. It communicates
both with the graphics chip itself and with video memory through the graphics
chip memory controller. In video memory, typically what's stored is static
geometry or semi-static geometry, also the command stream, textures,
preferably compressed, and, of course, your frame buffer and any other
intermediate services that you have. Then, on the actual hardware chip, we
have some caches to do buffering and to ensure that the pipeline's running
as optimally as possible.

5

Potential bottlenecks
On-Chip Cache MemoryVideo Memory

System
Memory

Rasterization

CPU

Vertex
Shading

(T&L)

Triangle
Setup

Fragment
Shading

and
Raster

Operations

Textures

Frame Buffer

Geometry

Commands

pre-TnL
cache

post-TnL cache

texture
cache

vertex
transform

limited

fragment
shader
limited

CPU
limited

texture
b/w

limited

frame buffer b/w limited

setup
limited

raster
limited

AGP
transfer
limited

The first real module that we encounter is the vertex Shader, also called the
vertex program units, and this is where you're going to do your transform and
lighting of vertices. These vertices then get put into some sort of vertex
cache that operates in different fashions. Some operate as FIFO’s, some, as
leased recently used, or LRU, and, obviously, current high-end cards have
larger caches than the older generation and mainstream cards. Then the
triangle setup stage is reached. This module reads vertices from the cache
and this is where basically the polygon is formed. Once the polygon is
formed, the rasterization is where it gets broken up into pixels. So now the
next stage only accepts pixels and this is the fragment shading or pixel
shader stage. The pixel shader stage is typically where a lot of time is spent
these days and we're going to spend a good amount of time analyzing this.
After the pixel shading stage is the raster operationm meaning the alpha
blend and stencil Z buffer. These can contribute to the bottleneck but
typically not. And, finally, you can have traffic from the pixel Shader and
raster module to the frame by frame back, right, and back because you can
do alpha blending, you need to read stenciling to read a Z and also the
fragment Shader can read textures so you can have a texture bottleneck as
you're accessing memory again.

6

Graphics rendering pipeline bottlenecks

The term “transform bound” often means the
bottleneck is “anywhere before the rasterizer”

The term “fill bound” often means the bottleneck is
“anywhere after setup”

Can be both transform and fill bound over the
course of a single frame!

When we're talking about bottlenecks, we tend to oversimplify the pipeline.
We talk about being transfer-bound or fill-bound and, when we mean
transfer-bound, it's really-- we're saying that it's anything before the polygon
gets broken up into pixels; i.e., before they're rasterized. And when we
mean fill-bound, we mean a number of things that happen after the polygon
is formed, and that could be raster, texture-bound, fragment Shader bound
or frame buffer bound.

7

Bottleneck identification

Run Scene Vary FB
bit depth

FPS
varies?

FB b/w
limited

Vary texture
size/filtering

FPS
varies?

Vary
resolution

FPS
varies?

Texture b/w
limited

Vary
fragment

instructions

FPS
varies?

Vary
vertex

instructions

FPS
varies?

Vertex
transform

limited

Vary
vertex size/

AGP rate

FPS
varies?

AGP
transfer
limited

Fragment
limited

Raster
limited

CPU
limited

Yes

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

This is a chart that you can use to identify what part of the graphics pipeline
is your bottleneck so I put the slide into the presentation just so you can have
it as reference and then, over the next few slides, I'm going to explain each
block.

8

Frame buffer bandwidth limited
Vary all render target color depths (16-bit vs. 32-bit)

If frame rate varies, application is frame buffer b/w
limited

On-Chip Cache MemoryVideo Memory

System
Memory

Rasterization

CPU

Vertex
Shading

(T&L)

Triangle Setup

Fragment
Shading

and
Raster

Operations

Textures

Frame Buffer

Geometry

Commands

pre-
TnL

cache

post-TnL cache

texture
cache

So let's start at the bottom of the pipeline. This is the part where the
graphics engine is trying to read from the frame or to frame. Simply to
access off-screen surfaces, not necessarily textures. So the easiest way to
identify if this is your bottleneck is to vary your bit depth. So if you're running
at 32 bits per pixel, run it at 16. If the frame rate varies then you're probably
frame buffer limited. This isn't necessarily the case all the time but it does
happen.

9

Texture bandwidth limited
Otherwise, vary texture sizes or texture filtering

Force MIPMAP LOD Bias to +10
Point filtering vs. bilinear vs. trilinear vs. anisotropic
If frame rate varies, application is texture b/w limited

On-Chip Cache MemoryVideo Memory

System
Memory

Rasterization

CPU

Vertex
Shading

(T&L)

Triangle Setup

Fragment
Shading

and
Raster

Operations

Textures

Frame Buffer

Geometry

Commands

pre-
TnL

cache

post-TnL cache

texture
cache

Let's move a little further up and we hit the fragment Shader but, even more
importantly, the data that the fragment shader is pulling. This data is texels
and texels can be a bottleneck if there are too many of them or if they don't
hit the texture cache efficiently or if they're being filtered with an expensive
filter that may not be improving the visual quality of the scene. So if you vary
the LOD of your MIP maps and basically force them all to the smallest size
possible, you'll be able to figure out if the texture resolutions are not
adequate and I do hope that you are using MIP maps because it's very
important in today's hardware. Next, you can vary the filtering. So if you're
using bilinear or tri-linear, you can drop down to point filtering, for example,
or you can increase the anisotropic ratio to 8X and, again, just check the
frame rate.

10

Fragment or raster limited
Otherwise, vary all render target resolutions

If frame rate varies, vary number of instructions of
your fragment programs

If frame rate varies, application is fragment shader
limited
Otherwise, application is raster limited

On-Chip Cache MemoryVideo Memory

System
Memory

Rasterization

CPU

Vertex
Shading

(T&L)

Triangle Setup

Fragment
Shading

and
Raster

Operations

Textures

Frame Buffer

Geometry

Commands

pre-
TnL

cache

post-TnL cache

texture
cache

Next, we have the fragment program and the rasterization module. The first
thing you should do here is vary your render target size, not the bit depth but
the actual resolution so it'll go from 640x480 to 1024 to 1280 to 1600, for
example. And if your frame rate varies, then you know that your bottleneck
is somewhere here, somewhere in the fragment shader or the rasterizer.
And to check if you're limited by the fragment shader, you can simply vary
the number of fragment shader instructions. If the frame rate doesn't vary,
then you are raster limited.

11

Vertex transform limited

Otherwise, vary the number of instructions of your
vertex programs

Careful: do not add instructions that are optimisable
If frame rate varies, application is vertex transform
limited

On-Chip Cache MemoryVideo Memory

System
Memory

Rasterization

CPU

Vertex
Shading

(T&L)

Triangle Setup

Fragment
Shading

and
Raster

Operations

Textures

Frame Buffer

Geometry

Commands

pre-
TnL

cache

post-TnL cache

texture
cache

Next up the pipeline, we have the vertex engine and the quickest way to vary
the load on that is to add or remove the vertex shader instructions. The only
caveat here is that the driver compiler and optimizer can easily detect if you
are doing operations that are optimizable and therefore easily removed. So
try to have dependent instructions and write out some random color to the
diffuse register. Again, if the frame rate varies, then this is where your
bottleneck is.

12

AGP transfer limited

Otherwise, vary vertex format size or AGP transfer
rate

If frame rate varies, application is AGP transfer
limited

On-Chip Cache MemoryVideo Memory

System
Memory

Rasterization

CPU

Vertex
Shading

(T&L)

Triangle Setup

Fragment
Shading

and
Raster

Operations

Textures

Frame Buffer

Geometry

Commands

pre-
TnL

cache

post-TnL cache

texture
cache

Even further up the pipeline, we have our AGP bus and this used to be a
large bottleneck. If you have a lot of dynamic geometry, this could still be a
bottleneck for you and, in that case, you can test it out by varying your vertex
format size. Typically, you want to keep vertices to 32 byte multiples, so 32,
64, et cetera.

13

CPU limited

Otherwise, application is CPU limited

On-Chip Cache MemoryVideo Memory

System
Memory

Rasterization

CPU

Vertex
Shading

(T&L)

Triangle Setup

Fragment
Shading

and
Raster

Operations

Textures

Frame Buffer

Geometry

Commands

pre-
TnL

cache

post-TnL cache

texture
cache

Finally, if none of that varied your frame rate, then you are CPU limited.

14

Bottleneck identification shortcuts
Run identical GPUs on different speed CPUs

If frame rate varies, application is CPU limited
Completely iff frame rate is proportional to CPU speed

Force AGP to 1x from BIOS
If frame rate varies, application is AGP b/w limited

Underclock your GPU
If slower core clock affects performance,
application is vertex-transform, raster, or fragment-
shader limited
If slower memory clock affects performance,
application is texture or frame-buffer b/w limited

Now, there are a couple of quick tricks you can use to figure out your
bottlenecks. First thing to do is to run the hardware on different CPUs, and
that way you're varying your CPU and you can immediately tell if it's CPU
limited if, and only if, the percentage increases are the same; i.e., the
megahertz percentage matches the performance percentage increase. Now,
the other thing you can do for AGP bottleneck is to vary the AGP transfer
rates in your BIOS so you can drop it down to 1X and see if that impacts
your frame rate. The other thing is using Power Strip or some utility, you can
under clock your GPU and it will obviously affect the whole pipeline so at
least you'll be able to tell if it's somewhere within the graphics chip. You can
also slow down the memory clocks and, in that case, you'll be slowing down
the texture reads or frame buffer read/write.

15

Bottleneck identification functionality

Write your application for easier profiling
Toggle

Objects: terrain, characters, buildings, vehicles
Passes: every pass has different bottleneck
AI/physics loop: remove CPU overhead

Be able to freeze at a certain frame
Provides consistency

Now, we've had trouble in the past identifying bottlenecks and what helps us
a lot is if the application is written in such a way that you can toggle different
parts of the scenes. For example, if you can remove the terrain or remove
all static objects and just leave character onscreen, then you can actually
profile just the characters or, if you remove everything else and just render
terrain, you can profile just the terrain and what this is doing is trying to
identify the different bottlenecks that are going to occur on your different
materials and objects, because each one of those can have a different
workload at different stages. The other thing that would be interesting is for
each of those objects, if you had multi-pass rendering, toggling the different
passes because each pass can also have a different bottleneck. And, finally,
something that would be interesting to do is to remove the CPU overhead or
the application use of the CPU by, for example, pausing the AI and physics
loops. Doing this will also allow you to basically pause the game such that
you have no other variables affecting your frame rate and, that way, have a
steady scene with which you can toggle the different objects and identify the
different bottlenecks for each of them.

16

Overall optimization: Batching I

Eliminate small batches:
Use thousands of vertices per vertex buffer/array
Draw as many triangles per call as possible

Thousands of triangles per call
~100k DIP/s saturates 3.0GHz Pentium 4

50fps means 2k DIP/frame!
Same performance for 2k tri/frame or 2M tri/frame

Now, there is one bottleneck on the CPU which is rather large and this has
turned out to be batching. What we mean by batching is the number of draw
primitive calls that you make. So a draw primitive call consists of sending a
set of polygons to the driver, hence to the device, with a certain state, right,
the state that you set before -- could be texture states, render states, or
sampling states, et cetera. So that's what we define as a batch. Now, it
turns out that, a P-4, 3 GHz CPU can only send 100,000 batches or 100,000
draw index primitive calls per second. What this means is that, at 50 frames
per second, you only have 2,000 draw calls per frame. What this also
means is that you can either choose to render 2,000 triangles per frame or 2
million triangles per frame. If you're using all of the 2,000 draw calls per
frame, then ensure that you're sending a lot of triangles for every draw call.

17

Overall optimization: Batching II

Eliminate small batches (cont’d):
Use degenerate triangles to join strips together

Hardware culls zero-area triangles very quickly
Use texture pages

Use a vertex shader to batch instanced geometry
VS2.0 and VP30 have 256 constant 4D vectors

Here are a couple of things that can help out with batching. You can join up
objects or parts of objects by using degenerate triangles. Degenerate
triangles are basically zero area triangles where two of the vertices are the
same. Now, the culling engine in the chip removes these zero area triangles
at basically no cost so don't be worried about sending inefficient triangles to
the hardware. We'll take care of it. Next thing you can do is to use texture
pages. You often render geometry with different draw calls because they
use different materials and the materials use different textures. Well, a good
trick that you could use is to store all your textures into a larger texture or
effectively a texture page and the only thing you have to worry about then is
the border around the texture because of MIP mapping and also filtering so
the limitation is that you can't tile these textures so, for any other geometry
that doesn't use tiling, this would be a good optimization. Lastly, it's a good
idea to use vertex shaders to batch instanced geometry. What this means is
that you can render several objects in one call, let's take a robot, for
example. Each jointed segment of the robot is rendered with a different
matrix. Usually we have to issue a draw call for each segment. What you
can do, however, is that for each vertex, you send an index number which
tells what matrix the vertex needs to be transformed with. And in the vertex
shader, you find the correct matrix from the constant vector using the index,
and use that to transform the vertex. This lets us to send all the vertices of a
robot in one draw primitive call.

18

Overall optimization: Indexing, sorting
Use indexed primitives (strips or lists)

Only way to use the pre- and post-TnL cache!
(Non-indexed strips also use the cache)

Re-order vertices to be sequential in use
To maximise cache usage!

Lightly sort objects front to back

Sort batches per texture and render states

Another general rules for optimizing the engine is to use indexed primitives.
Typically, strips are not long enough to efficiently render geometry all the
time but indexed lists actually allow us to make best use of the vertex cache
because non-indexed triangle lists do not use the vertex cache. The other
thing that you want to do is to reorder your vertices such that they hit the
same area of memory. Our chip has a DMA cache, and this cache stores
vertices that were fetched from memory and if you're loading vertices from
very different areas in memory, then you're going to be thrashing the cache
and transferring more data than necessary. Next you want to order your
scene front to back. What this is doing is taking advantage of our Z-cull
technology. Z-cull has been around since GeForce 3 days and is also
available in other people's hardware. What it does is accelerated removal of
pixels that will never be seen and it's important to take advantage of this to
get better performance, especially for scenes with high depth complexity.
This can be actually used for a Z first technique that I'll talk about later. And,
lastly, you want to sort your batches per texture because texture changes
are the hardest hitter of all the state changes possible.

19

Overall optimization: Occlusion query

Use occlusion query to protect vertex and pixel
throughput:

Multi-pass rendering:
During the first pass, attach a query to every object
If not enough pixels have been drawn for an object, skip
the subsequent passes

Rough visibility determination:
Draw a quad with a query to know how much of the sun is
visible for lens flare
Draw a bounding box with a query to know if a portal or a
complex object is visible and if not, skip its rendering

Recently exposed in the DX9 API (but it's been available in OpenGL for a
while) are occlusion queries. Occlusion queries use an ID-based approach
to query if an object tagged with this ID has been rendered. You let the
hardware process it, meaning that there is no CPU intervention, but the GPU
doesn't actually write anything, it just does a Z check and then it returns a
flag to the driver that says, yes, something's been rendered, and gives you
the number of pixels, or no, nothing's been rendered. So what you can do
with this is try to render a very low-cost bounding box for your object after
laying down large scene occluders, render the rest of the scene, then go
back and query the driver to see if that object could have rendered any
pixels. If it did, then send the real object down that will actually be visible. A
way to optimize this is, in the case of multi-pass rendering, just send down
the first pass but tag it. And, at the end of the scene, draw the subsequent
passes if, and only if, it passed the occlusion test. The other thing you can
use this for is something like a sun glare, where you don't want to be locking
the frame buffer to check if the sun pixels were drawn or not. What you can
do is render the sun with an occlusion tag and then, afterwards, render the
glares, depending if the sun was visible or not and, because we returned the
number of pixels drawn, you can basically fade in and fade out the sun.

20

CPU

Overall optimization:
Beware of resource locking!
A call that locks a resource (Lock, glReadPixels) is potentially
blocking if misplaced:

CPU is idling, waiting for the GPU to flush
Avoid it if possible
Otherwise place it so that the GPU has time to flush:

Render to
texture N

Lock texture N

Idle

Render to
texture N+1

Lock texture N+1

Render to
texture N

Lock texture N-1

Render to
texture N+1

Lock texture N

GPU
Render to
texture N

Render to
texture N+1

Resource locking basically means that the GPU is waiting to access a
resource that, for some reason, you've grabbed. You've told us that you
want to read from it, for example. This is bad. This will start synchronizing
the GPU to the CPU. You want to avoid this at all cost. However, if you
can't live with that, then what you can do is locking a resource that will not be
used for another few frames and, that way, you ensure that the graphics unit
is not waiting around for you to unlock it.

21

CPU bottlenecks: Causes

Application limited:
Game logic, AI, network, file I/O
Graphics should be limited to simple culling and
sorting

Driver or API limited: Something is wrong!
Off the fast path
Pathological use of the API
Small batches

Most graphics applications are CPU limited

Now, let's move on to potential CPU bottlenecks. Some games are
bottlenecked by the application itself, right, doing your usual AI physics, et
cetera. In this case, it was probably limited by the graphics processing just
to avoid rendering possibly simple geometry. Don't do anything more
complicated than simple sorting, culling, and static LOD management. The
other area where it could be bottlenecked on the CPU is in the driver or
sometimes in the API. In these cases, then there's something very strange
going on because we're having to do a lot of work to run the graphics chip.
The biggest cause of a driver bottleneck is a great number of batches per
frame and we covered the details before. So keep track of those. Also
sometimes you may be doing begin and end scene for every draw call.
That's not good, either. So just check that you're doing something
reasonable with the API. And it should be noted that most graphics
applications these days are CPU limited, even with your newer CPUs.

22

CPU bottlenecks: Solutions

Use CPU profilers (e.g., Intel’s VTune)
Driver should spend most of its time idling

Look for assembler idle loop or use NVPerfHUD

Increase batch-sizes aggressively
At the expense of the GPU!

For rendering
Prefer GPU brute-force, but simple on CPU
Avoid smart (but expensive) CPU algorithms
designed to reduce render load

The easiest way to check CPU limitations is to use V-tune, for example. V-
tune should let you know how much time you're spending in the application,
in the API, and/or in the driver. We do have something called NVPerfHud
which should help you out, not only for this but for a couple of other things,
and I'll show you an example later. A solution for the batch size problem is to
try to increase the number of polygons per batch and, therefore, reduce the
number of batches. We talked a little bit of how to do this using texture
pages and we're going to go into some detail about how to optimize the other
parts of the GPU but I want you to remember that whatever I'm saying about
the optimizations you do for the GPU, don't do them if they're going to impact
or increase the number of batches dramatically. So when you're optimizing
for batches, do it at the expense of the GPU.

23

AGP transfer bottlenecks
Unlikely bottleneck for AGP4x

AGP8X is here
Too much data crosses the AGP bus:

Useless data
Solution: Reduce vertex size

Too many dynamic vertices
Solution: Use vertex shaders to animate instead

Poor management of dynamic data
Solution: Use the right API calls and flags

Overloaded video memory
Solution: Make sure frame buffer, textures and static
vertex buffers fit into video memory

Now, let's step through all the stages of the pipeline after the CPU. The first
thing we hit is the AGP bus. Like I said, most of the time, you're not going to
be limited by this. The AGP8X bus transfers data at a rate of 2 gigabytes per
second. That's plenty of bandwidth to transfer tens of millions of vertices per
second. If you do find that you're limited by this, you can reduce the vertex
size. We do have vertex formats that are 16 bits instead of 32 bits per
component and that should help quite a bit. Also, if you find that you are
using too many dynamic vertices, then chances are you're not using vertex
Shaders enough. You can do complicated animations on the vertex shader
such as skinning and morph targets and you should be doing this instead of
manipulating geometry on the CPU. Next, if you do need to have a lot of
dynamic data, you should be managing this data with the proper API calls
and with the proper flags. We'll go into a little more detail of the correct flags
for vertex buffers. And, finally, just make sure that everything is fitting into
video memory. So what can happen is that sometimes textures can spill
over into AGP memory and then, at some point, your scene hits this texture
that's in AGP memory and you're slowing down because you don't have the
20 gigabytes per second to video memory access, you have the 2 gigabytes
per second to AGP memory access and the GPU is then sitting idle waiting
for this data to be transferred.

24

AGP transfer bottlenecks

Data transferred in an inadequate format:
Vertex size should be multiples of 32 bytes
Solution: Adjust vertex size to multiples of 32 bytes:

Compress components and use vertex shaders to
decompress
Pad to next multiple

Non-sequential use of vertices (pre-TnL cache)
Solution: Re-order vertices to be sequential in use

Use NVTriStrip

When transferring vertices across the AGP bus, you want to make sure that
they are in 32-byte multiples. So you're going to have 32, 64, et cetera and
ensure that they're being transferred sequentially. We do have a triangle
stripper called NVTriStrip that you can download from our site and this will
actually reorder the vertices to be in sequential use and make optimal use of
the post-T&L vertex cache.

25

Optimizing geometry transfer

Static geometry:
Create a write-only vertex buffer and only write to it once

Dynamic geometry:
Create a dynamic vertex buffer
Lock with DISCARD at start of frame

Then append with NOOVERWRITE until full
Use NOOVERWRITE more often than DISCARD

Each DISCARD takes either more time or more memory
So NOOVERWRITE should be most common

Never use no flags
Semi-dynamic geometry:

For procedural or demand-loaded geometry
Lock once, use for many frames
Try both static & dynamic methods

When managing your vertex buffers, you want to create them with a write-
only flag if they're going to be static. If you're doing dynamic geometry, then
you want to create a dynamic buffer with the dynamic flag, you want to lock
with discard and overwrites and the rule of thumb for this is that an overwrite
doesn't hit us as bad as a discard. Discard means that the driver has to
allocate a new vertex buffer somewhere in order for you to write to it while
the GPU is actually using the previous vertex buffer at that point in time. And
the takeaway from both of these rules is that you should never not use a flag.
Always, always, always tell us how you're going to be managing your
geometry. For semi-dynamic geometry, you can try a bit of both. What
we've found is that, if you only update your vertex buffer once per frame, for
example, you can create it as static and do a discard on it. And that's usually
pretty good because it makes it reside in video memory. If you're creating a
dynamic vertex buffer, it'll typically reside in AGP memory so just bear in
mind where you want to store it and how often you're going to modify it.

26

Vertex transform bottlenecks

Unlikely bottleneck
Unless you have 1 Million Tri/frame (Cool!)
Or max out vertex shader limits (Cool!)

>128 vertex shader instructions

Too many vertices
Solution: Use level of detail

But: Rarely a problem because GPU has a lot of
vertex processing power
So: Don’t over-analyze your level-of-detail
determination or computation in the CPU
2 or 3 static LODs are fine

Next in the pipeline we have our vertex engine. Now, for the GeForce FX
5900 ultra, we can transform a whole lot of vertices -- we're talking in the
order of hundreds of millions of vertices per second. So I really doubt that
you're going to be bottlenecked by your Shader instructions. Usually you
could be bottlenecked here because your vertices are not in strip order,
meaning that you make very poor use of the vertex cache. But let's say that
you have too many vertices in general, what you could do is use static LODs.
Basically drop off the LODs in the distance but, don't do any smart things in
the CPU to do dynamic subdivision, for example. It's possible to do but you
don't want to be doing it for all your objects.

27

Vertex transform bottleneck causes

Too much computation per vertex:
Vertex lighting with lots of or expensive lights or
lighting model (local viewer)

Directional < point < spot
Texgen enabled or texture matrices aren’t identity
Vertex shaders with:

Lots of instructions
Lots of loop iterations or branching

Post-TnL vertex cache is under-utilized
Use nvTriStrip

The next thing in the vertex engine is the number of instructions. Now, as I
said before, you can transform a whole lot of vertices and, obviously, the
more instructions that you execute per vertex, the slower you're going to go.
Sometimes you are applying lights that, for example, will not actually light
that object. So you may want to be toggling these, switching between
different Shaders to ensure that you're optimally processing that vertex. The
next thing is that you may be using a lot of the newer instructions such as
looping or branching. Looping itself is not particularly bad. Branching starts
to get worse. I mean, just like any processing unit, the more you branch, the
less efficient you get and it's a lot harder for us to do branch prediction on the
GPU. So try to limit it, for now, though in the future, this is going to be a
faster approach to-- especially for increasing batching.

28

Vertex transform bottleneck solutions
Re-order vertices to be sequential in use, use PostTnL cache

NVTriStrip
Take per-object calculations out of the shader

compute in CPU and save as program constants
Reduce instruction count via complex instructions and vector
operations

Or use Cg/HLSL
Scrutinize every mov instruction

Or use Cg/HLSL
Consider using shader level of details

Do far-away objects really need 4-bone skinning?
Consider moving per-vertex work to per-fragment
Force increased screen-resolution and/or anti-aliasing!

Sometimes, when we write Shaders, we write them for convenience. In other words, we just
put in a few constants, maybe multiply them in the Shader itself, instead of actually
calculating them on the CPU. So these kinds of compilations can generally be removed;
however, remember that you shouldn't do this if it's going to impact the number of batches
that you're sending across. So, for example, it might be a good idea, if you have lots of
batches, to concatenate them and do some per object calculations on the GPU but, if you're
not suffering from batching performance and you're suffering from vertex Shader
performance, then take out the instructions, basically just constant instructions, and leave
them to the CPU. Next, recall that the vertex Shader is a 4D unit. In other words, it's got
four units that operate on a vector simultaneously and it's got lots of complex instructions
that have been heavily optimized by our architecture team. So you can use a combination of
those complex instructions and also remember that you have vector operations that can be
swizzled so you can have inputs that map to different source inputs and then output to
maybe just one, two, three or even four components of the vector without having to start
moving data around yourself. And that brings us to the next point which is we very, very
rarely see a need for a move instruction so every time you see one, make sure it's for a very
good reason. And, finally, there's a lot of work that’s probably not necessary for objects that
are really far away. So before we talked about reducing the number of vertices on objects
that have lower levels of detail for when they're in the distance. Well, you can do the same
thing with shaders so one example is, if you have a character that's skinned with four bones,
well, does he really need four bones when he uses only a few pixels on the screen?
Chances are not and you can drop that to two or maybe even one bone. And another thing
that you could do is, instead of reducing the bottleneck here, you can just increase the
bottleneck somewhere else and you can either increase the resolution or enable antialiasing
or anisotropic filtering.

29

Setup bottleneck

Practically never the bottleneck
Except for specific performance-tests targeting it

Speed influenced by:
The number of triangles
The number of vertex attributes to be rasterized

To speed up:
Decrease ratio of degenerate to real triangles
But only if that ratio is substantial (> 1 to 5)

Next module in the pipeline is the setup unit and this is where the vertices
get made into triangles or quads. This is almost never a bottleneck so you
probably don't have to worry about it. It's influenced by the number of
triangles or the attributes that each triangle has. In other words, it's got to
set up each of the colors, the texture coordinates or whatever other data
you're passing around so the more of that data you have, the longer it'll take
to set up that triangle but, typically, this is insubstantial.

30

Rasterization bottlenecks

It is the bottleneck if lots of large z-culled triangles
Rare

Speed influenced by:
The number of triangles
The size of the triangles

Next is the rasterization module which breaks up the triangles into pixels
and, again, this is not a module that typically causes a bottleneck. The only
time that this is going to be a bottleneck is if you have a lot of non-visible
triangles that are being Z culled. Basically while this triangle's being Z culled,
it's introducing lots of bubbles in the pipeline and effectively generating no-
ops for all the stages downstream from this rasterization module.

31

GPU bottlenecks – fragment shader

In past architectures, the fixed, then simply
configurable nature of the shader made its
performance match the rest of the pipeline pretty well
In NV1X (DirectX 7), using more general combiners
could reduce fragment shading performance, but
often it was still not the bottleneck
In NV2X (DirectX 8), more complex fragment shader
modes introduced an even larger range of throughput
in fragment shading
NV3X (CineFX / DirectX 9) can run fragment shaders of
512 instructions (2048 in OpenGL)

Long fragment shaders create bottlenecks

So now we get into the really interesting part, the fragment shader, and this
module is much more complicated than it was in the past. What this means

is that there is a lot more opportunity to make it go slow. Now, with the
CINE-FX architecture, basically all of the GeForce FX family, you can run
512 instructions under DX-9 or 2048 in Open GL. And obviously the longer
the shader, the slower it goes and it's very easy to write a long fragment
shader, especially when using high level languages. Again, when we're
writing shaders, we don't necessarily think about the performance of them
until we start running them and you are going to have to write them liberally
at first and then go back and optimize them and see where you can start
squeezing more performance out of them. I'll go through some points that
will cover these topics.

32

GPU bottlenecks – fragment shader:
Causes and solutions

Too many fragments
Solution:

Draw in rough front-to-back order
Consider using a Z-only first pass

That way you only shade the visible fragments in
subsequent passes
But: You also spend vertex throughput to improve
fragment throughput
So: Don’t do this for fragments with a simple shader
Note that this can also help fb bandwidth

In the first place, you might have too many pixels and this will cause a
bottleneck in the fragment shader. What you can do here is to try to use our
Z cull engine more efficiently by rendering roughly front to back. Another
thing that you can do if you have complex shaders or lots of multi-pass
shading is that you want to do a Z only first pass. When you're doing a
complex, single pass shader, you want to render Z only, effectively mask out
your colors and you can do this using a render state. This will actually let us
run incredibly fast because we know that you're not writing any color, so we
can really kick the engine into turbo and spit out these pixels and do really
fast Z checks. Now, what happens is, that next time when you actually
render the real pixels, you will have already written the entire depth surface
and you will only be lighting the pixels that are visible. So this is a way of
decoupling geometric or your scene complexity from your pixel complexity.
Now, what happens if you have multi-pass is you can do the same thing.
Instead of writing Z only first, you just write the first pass, including Z and
then, for subsequent passes, make sure you turn off Z writes but keep Z
checks on.

33

GPU bottlenecks – fragment shader:
Causes and solutions
Too much computation per fragment
Solution:

Use fewer instructions by leveraging complex instructions,
vector operations and co-issuing (RGB/Alpha)
Use a mix of texture and combiner instructions (they run in
parallel)
Use an even number of combiner instructions
Use an even number of (simple) texture instructions
Use the alpha blender to help

SRCCOLOR*SRCALPHA for modulating in the dot3 result
SRCCOLOR*SRCCOLOR for a free squaring

Consider using shader level of detail
Turn off detail map computations in the distance

Consider moving per-fragment work to per-vertex

Another cause of this stage being a bottleneck is that you are just running too many
instructions per pixel. Just like the vertex shader, this unit operates on 4-D vectors. You can
make it actually run on a 3-D vector and a scaler, or what we consider Alpha. This is called
co-issuing. You can actually save quite a number of cycles by doing co-issuing and it
basically happens automatically as long as you're not using the alpha, the result of the scaler
operation in your vector operation. Next is that you can optimize by doing even texture
lookups and even map operations. On our hardware, you get two types of lookups and two
map operations in a single cycle. If you're not running all these modules, if you're not using
all these modules at the same time, then you're basically just going to be wasting their
cycles. Next thing is that sometimes you might be able to get away with doing multiplication
in the alpha blend unit so there's a final multiply out the back door. Do note that this happens
at 32 bits per pixel. In other words, it doesn't happen with floating point formats. And, again,
you can do shader level of detail, like we discussed for the vertex engine. Can you really
see that the character that's using up five pixels of the screen is truly bump mapped or can
you even see that there are eight lights on him? Chances are you can't so just, kill certain
instructions, load a different Shader when the object is far away. Another thing that we
talked about in the vertex engine was to move constant to work. In other words, by sending
them to the CPU. Now, this also applies to the pixel Shader because, basically, if something
is going to be linear, it can be done in the vertex engine. If something's going to be constant,
it can be put into a constant register. So, consider moving stuff from the actual pixel shader
to the other units.

34

GeForce FX fragment shader
optimisations I

Additional guidance to maximize performance:
Use fx12 instructions whenever possible

All previous DirectX shaders were at ~9-bit precision
Use fp16 instructions whenever possible

Works great for traditional color blending
Use the _pp instruction modifier

Use ps_2_a profile in HLSL
Minimize temporary storage

Use 16-bit registers where applicable (most cases)
Reuse registers and use all components in each
(swizzling is free)

As I said before, the CINE-FX architecture is more complicated than previous ones and we
do have a variety of precisions within the fragment shader. The lowest precision is fixed
point 12 base and it basically gives you a range of minus two to two. So this is pretty good,
considering that, for all previous Direct X versions, the maximum precision was about 9 bits
so 12 bit fixed should give you enough to do most of your usual lighting calculations. The
next step up from there is floating point 16. It's actually what we call the half precision format
and this is great for slightly greater range. It works fine for anything that was previously done
with 9 bit precision, obviously, and it's accessible under the DX-9 assembly instructions
when using the underscore PP modifier. In HLSL, you can access the half data type using
PS2_A and this is also optimized for the CINE-FX architecture. Now, because HLSL or CG
makes it very easy to write long, complicated pixel shaders, it's also very easy to
dramatically increase the number of temporary registers that you'll be using. So the point is
to use half precision registers if possible, i.e., the half data type or the FP16 float registers.
And also try to reuse as many registers as possible so don't load up 16 textures into 16
different registers and then use each one individually when you could have actually just
loaded two textures at a time into two registers, done a math operation, saved it into one of
those whose value was discarded before and then reuse another two registers for the next
set of texture loads. The other thing that you can do is that we do have arbitrary swizzling so
you can, for example, store two 2-D vectors in a single 4-D vector because this is a 4-D
engine and just swizzling, masking two components, is absolutely free.

35

GeForce FX fragment shader
optimisations II

Select appropriate unit for ops: CPU, Vertex, Pixel
CPU for constants, Vertex for linear calculations

Use lowest pixel shader version
You only get so many pixel shader cycles per
frame

Use them for visually interesting effects
Per-pixel bump maps and reflections

Give yourself more cycles for effects by not
spending them on unneeded precision and
calculation

In the end, what we're talking about is to choose the appropriate unit for the
type of data that you're calculating. Constant data can definitely go into the
CPU and then be transferred to the vertex and pixel engines as constant
registers. Vertex engines used for data that's going to be interpolated across
a triangle and the pixel engine is going to be used for data that's going to
vary at every pixel. Do try to use the lowest pixel shader version available to
you. Basically, what this means is, if you're only doing 4 texture lookups and
8 map operations and you're not doing a dependent texture read, then use
PS-1.1 up to 1.3 version. If you're doing some dependent operations and
you can fit within 1.4 shader, then use that and, if you're doing lots of
dependent operations, then use, only then use pixel shader 2.0. This also
guarantees that, for previous pixel shader versions, 1.X, that you're using the
low precision register types so that actually saves storage and cycles. The
same as you get a certain number of batches per frame, you can also think
of getting the same number of pixel Shader cycles per frame. So you've got
to basically choose where you're going to spend your cycles. Do effects that
are going to distinguish your game visually, stylistically. Don't do effects that
have a minor difference on a pixel and they're consuming several cycles to
do so.

36

GPU bottlenecks – texture:
Causes and solutions
Textures are too big:

Overloaded texture cache: Lots of cache misses
Overloaded video memory: Textures are fetched from AGP
memory

Solution:
Texture resolutions should be as big as needed and no
bigger
Avoid expensive internal formats

CineFX allows floating point 4xfp16 and 4xfp32 formats
Compress textures:

Collapse monochrome channels into alpha
Use 16-bit color depth when possible (environment maps
and shadow maps)
Use DXT compression, note that DXT1 quality is great on
modern NV GPUs

Okay. As part of the input to the fragment engine is the texture unit. The
texture unit basically consists of the cache and a decoder for compressed
textures. One of the problems that you can run into is that you are thrashing
the texture cache a lot or you're loading textures from AGP memory. I
mentioned how you can spill over from video memory so one of the things to
do for the latter is to use compressed textures. Use 16-bit colors whenever
you can. Use DX T-1 compression over the other compression formats but,
if that's not good enough quality, then go on to DX T-3 and T-5. Now,
textures should also be using MIP maps and when choosing the highest MIP
level, basically choose it depending on how much of that texture is going to
be on screen at a certain screen resolution. So you don't really want to be
drawing a character with 2048 x 2048 textures when, at most they're using a
512 x 128 area of the screen. Now, with the new capabilities that CINE FX
offers is that you can choose to store floating point data. Now, floating point
data is expensive for two reasons. First, it uses a lot of bandwidth to video
memory, whether it be through textures or through render targets. Secondly,
it costs a certain amount to decode these floating point surfaces. So use
them sparingly. Use them only when needed and you only really need them
for high dynamic range and actually the next slide here shows you the format
range and precision that they run at.

37

Texture format, range, and precision

Y

Y

N

Y

Y

Render

NYN24 bit76.8 dBRGBA32F

NYN11 bit9.3 dBRGBA16F

YYN16 bit4.9 dBD3DFMT_R16G16

NYN8 bit76.8 dBRGBE8

YYY8 bit2.4 dBA8R8G8B8

FilterTextureBlendPrecisionRangeFormat

So your typical 32-bit ARGB format gives you 256 levels, it's not much but it
supports all the blend, render, texture and filter operations. ARGB-8 is
basically the same formats but you're using the alpha as an 8-bit exponential
that's shared across the three color components. Now, this gives you a lot
more range; however, even though it's a standard format, blending and
filtering doesn't really work on that because the exponent can't just be added.
The next format is 16-bit high low format. Basically 16 bits integer red, 16-bit
integer green making up a 32-bit slot. This gives you slightly more range but
the problem is that you can't render to it. Because you can't render to it, you
can't blend to it. However, they're great for textures and, in effect, they're
actually pretty good for storing really high precision vectors. For example,
you can use two of these texture surfaces to make a 4-D 16-bit integer
surface that is filtered and running optimally on a hardware. Now, we'll get to
the floating point formats. First one is the half-precision. This has greater
range than the previous integer formats but you can't blend to it and you
can't filter it. And then the 32-bit version of that has the greatest range of all
but, again, you can't blend to it and you can't filter to it. In the future, this is
likely to change as it becomes much more widespread and more useful.

38

GPU bottlenecks – texture:
Causes and solutions

Texture cache is under-utilized: Lots of cache misses
Solution:

Localize texture access
Beware of dependent texture look-up

Use mipmapping:
Avoid negative LOD bias to sharpen: Texture caches are
tuned for standard LODs

Sharpening usually causes aliasing in the distance
Prefer anisotropic filtering for sharpening

Beware of non-power of 2 textures
Often have worse caching behavior than power of 2

What happens if the texture cache is under-utilized? Well, chances are that you're not using
the texture cache well. The easiest way to break the texture cache is to do lots of dependent
texture reads and what I mean by dependent texture reads is to generate a texture
coordinate in the fragment shader and then go fetch it instead of the interpolated texture
coordinate. Let's say you're actually generating texture coordinate from a previous texture
read, so, in this case, we've got some sort of random data coming in, doing some math
operations and generating brand new texture coordinates. This is going to start fetching
texels from areas that are very different in your actual texture map, which is going to cause
the cache to be thrashed often. A good way to start avoiding this is to MIP mapping
because, basically, calculating the gradient of your dependent texture reads enables us to
fetch the texels from a smaller MIP map. But do avoid using negative LOD bias. Negative
LOD bias basically sharpens the image but what happens is that it looks sharper for a static
image but it actually causes aliasing on the moving image. So, on a screen shot, it might
look nicer but, when you actually play the game, you'll see sparklies going around. Instead
of doing negative LOD bias, if you do want to sharpen, you should use anisotropic filtering
only for those textures that really need it. So what anisotropic filtering does is to sample
more in a given direction. We choose the direction by calculating how much texel area is
used by a pixel. So if you're using more texels on the X axis than on the Y axis, then we're
going to do more filtering on the X axis. And we can have up to an 8:1 ratio of filtering. We
can take eight times as many samples in the X direction than in the Y direction. And lastly
you should beware of non-power-of-2 textures. They tend to have worse caching behavior
than power-of-2 sizes, especially when doing dependent texture reads.

39

GPU bottlenecks – texture:
Causes and solutions

Too many samples per look-up
Trilinear filtering cuts fillrate in half
Anisotropic filtering can be even worse

Depending on level of anisotropy
The hardware is intelligent in this regard, you only pay for
the anisotropy you use

Solution:
Use trilinear or anisotropic filtering only when needed:

Typically, only diffuse maps truly benefit
Light maps are too low resolution to benefit
Environment maps are distorted anyway

Reduce the maximum ratio of anisotropy
Often, using anisotropic reduces the need for trilinear

Another texture unit problem could be filtering so tri-linear filtering literally
cuts your fill rate in half. Good way to avoid that penalty is to only enable tri-
liner filtering on textures that really need it. Light maps, for example, are
typically very low resolution and you won't be able to see the MIP line or you
might not even hit a lower MIP level until very, very far away, at which point it
hardly matters. So there are certain textures that you don't need tri-linear
filtering for and, equivalently, there are some textures that you don't need
anisotropic filtering for. Pick and choose what type of filtering you do,
minimize expensive ones as much as possible.

40

Fast texture uploads

Use managed resources rather than your own scheme
Rely on the run-time and the driver for most texturing
needs

For truly dynamic textures:
Create with D3DUSAGE_DYNAMIC and
D3DPOOL_DEFAULT
Lock them with D3DLOCK_DISCARD
Never read the texture!

Now, what happens if you're running out of texture space or for some reason
you're updating a texture dynamically? Well, what you want to be doing is,
again, using the flags that we talked about for vertex buffers. You want to be
creating a texture with a dynamic flag whenever you're modifying it and
you're going to be locking them with discards but you never, ever, ever want
to read a texture. So lock to update it but don't read it. Just discard it. The
driver will start up a new area in memory in case the GPU was busy with the
previous texture, write to that and then discard the previous memory area
once the GPU is done using it.

41

GPU bottlenecks – frame buffer:
Causes and solutions
Too much read / write to the frame buffer
Solution:

Turn off Z writes:
For subsequent passes of a multi-pass rendering scheme
where you lay down Z in the first pass
For alpha-blended geometry (like particles)

But, do not mask off only some color channels:
It is actually slower because the GPU has to read the
masked color channels from the frame buffer first before
writing them again

Use alpha test (except when you mask off all colors)
Question the use of floating point frame buffers

These require much more bandwidth

Now we're getting into the final stages of the graphics pipeline and here
we're basically talking about reads and writes to the frame buffer. What
could be happening is that your read/modify/writing to the Z buffer, which is
not always necessary. For example, for multi-pass rendering, after the first
pass, you can turn off Z write and instead only do compares. Also, for alpha-
blended geometry, you may not need to do a Z write. Now, DX-9 allows you
to mask off color channels but if you only mask off some color channels,
what happens is that the GPU has to go read the frame buffer, read the
masked channels, combine them with the non-masked channels and then
write that pixel back again so you either want to turn color writes on or off but
don't do partial writes. And, lastly, again on the subject of floating point
buffers, you really want to question their use because they use up a
tremendous amount of memory bandwidth.

42

GPU bottlenecks – frame buffer:
Causes and solutions

Solution (continued):
Use 16-bit Z depth if you don’t use stencil

Many indoor scenes can get away with this just fine
Reduce number and size of render-to-texture targets

Cube maps and shadow maps can be of small resolution
and at 16-bit color depth and still look good
Try turning cube-maps into hemisphere maps for reflections
instead

Can be smaller than an equivalent cube map
Fewer render target switches

Reuse render target textures to reduce memory footprint
Separate Z buffers or else Z-cull will be invalidated

Other tricks that you may be able to get away with is using 16-bit Z buffers.
Typically in an interior scene, you don't have a large Z range so this might be
good enough for you. Don't trade this with W buffers because our hardware
is fully optimized for Z buffers, not for W buffers. Otherwise you're going to
lose things like Z cull, for example, and that you definitely don't want to lose.
For techniques where you're rendering to a texture, like rendering the
environment map for some object, then you want to reduce the resolution of
these environment maps or you could even reduce the color depth of these
environment maps. Let's say you're mapping this on a sphere, especially on
a slightly diffuse or very bumpy sphere, then you won't be able to see the
texture detail and the resolution will be useless at that point. So really
consider what quality you're looking for, depending on what it's being used
for. Now, we talked about spilling over the video memory to AGP memory.
Well, sometimes what can happen is that, if you're rendering to off-screen
surfaces, you may be consuming so much memory that the driver has to
remove textures from video memory. In this case, you want to be re-using
those render targets as much as possible; however, keep separate Z buffers
because, if you are in the middle of a frame and you render to some off-
screen surface without switching the Z surface as well, when you go back to
draw the main render target the Z cull buffer will be invalidated and you'll lose
all Z cull optimizations for the remainder of the scene.

43

GPU bottlenecks – frame buffer:
Causes and solutions

Solution (continued):
Use hardware fast paths:

Buffer clears
Z buffer and stencil buffer are one buffer, so:

If you use the stencil buffer, clear the Z and stencil buffers together
If you don’t use the stencil buffer, create Z-only depth surface (e.g.
D24X8), otherwise it defeats Z clear optimizations

Z-cull is optimised for when Z-bias and alpha tests are
turned off and stencil buffer is not used

Try using the new DirectX 9 constant color blend instead
of a full-screen quad for tinting effects

D3DRS_BLENDFACTOR
Also standard in OpenGL 1.2+

Lastly, a few general tips to keep in mind. This has been true for all
hardware for awhile now. Buffer clears are very fast but do try to keep buffer
clears together because the Z surface actually includes the stencil surface,
then clearing them together avoids spending time clearing them separately
and that's not going to help. We can actually clear Z very, very fast and, if
we are able to clear a stencil as well at the same time, then it's practically for
free. The Z cull buffer, as well, is particularly fast when you're not using Z
bias or alpha testing or the stencil buffer. So try to do as much geometry
without using those three things and, lastly, you can actually do color blends
for free if, for example, you're rendering the last pass of a multi-pass
because you're already doing blending.

44

Conclusion

Modern GPUs are programmable pipelines, which
means more potential bottlenecks and more
complex tuning
Goal is to keep each stage busy (including the CPU)
creating interesting portions of the scene
Understand what you are bound by in various
sections of the scene

Skybox is probably texture limited
Skinned, dot3 characters are probably transfer or
transform limited

Exploit inefficiencies to get things for free
Objects with expensive fragment shaders can often
utilize expensive vertex shaders at little or no
additional cost

We've seen that current generation hardware is quite complicated. We have
stepped into the realm of highly programmable architectures which means
that it's getting much easier to do bad things and it's also getting harder to
identify what you're doing incorrectly. So, hopefully, this presentation has
given you a good place to start when optimizing your graphics engine and
remember that, because rendering a frame is a pipeline from the CPU to the
last stage of the GPU, you want to keep each stage as busy as the slowest
stage. Conversely, you want to reduce the load of the slowest stage as
much as possible and you have to understand that each part of the scene is
going to have a different bottleneck. If you're doing multi-pass rendering
then each pass of that multi-pass rendering might have a different
bottleneck. And, lastly, just try to get more quality out of the scene if you're
not able to reduce the workload.

45

Questions, comments, feedback?

Koji Ashida <kashida@nvidia.com>

http://developer.nvidia.com

Thank you very much. I hope this was useful and, in particular, that you will
be able to make a significant difference to your engine. You can download
NVPerfHUD from our registered developer site.

