
12 Tips for Maximum Performance with

PGI Directives in C

List of Tricks

1. Eliminate Pointer Arithmetic

2. Privatize Arrays

3. Make While Loops Parallelizable

4. Rectangles are Better Than Triangles

5. Restructure Linearized Arrays with Computed indices

6. Privatize Live-out Scalars

7. Inline Function Calls in Directives Regions

8. Watch for Runtime Device Errors

9. Accelerating C++

10. Be Aware of Data Movement

11. Use Contiguous Memory for Multi-dimensional Arrays

12. Use Data Regions to Avoid Inefficiencies

Trick #1: Eliminate Pointer Arithmetic
Pointer arithmetic is often used to swap pointers or increment through an array. This code is currently

not allowed within compute regions. For example, the following routine:

void memcpy(float * restrict A, float * restrict B, int count) {
float* ptrA = A;
float* ptrB = B;
 while (count--) {
 *ptrA++ = *prtB++;
 }
 return;
}

would need to be rewritten to use array indexing:

void memcpy(float *restrict A, float * restrict B, int count) {
#pragma acc region
{
 for (int i=0; i<count;++i) {
 A[i] = B[i];
 }
}

return;
}

Note the use of the C99 restrict keyword. This asserts to the compiler that the arrays do not overlap and

hence updates to one will not affect others.

Trick #2: Privatize arrays
Some loops will fail to offload because parallelization is inhibited by arrays that must be privatized for

correct parallel execution. In an iterative loop, data which is used only during a particular iteration can

be declared private. And in general code regions, data which is used within the region but is not

initialized prior to the region, and is re-initialized prior to any use after the region can be declared

private.

For example, if the following code is compiled:

#pragma acc region

{

 for (int i=0; i<N;++i) {

 for (int j=0; j<M;++j) {

 for (int ii=0; ii<10;++ii) {

 tmp[ii] = ii;

 }

 sum=0;

 for (int ii=0; ii<10;++ii) {

 sum+=tmp[ii];

 }

 A[i][j] = sum;

 }

 }

}

Informational messages similar to the following will be produced:

% pgcc -ta=nvidia,cc20 -Minfo=accel private.c

main:

 19, Generating copyout(A[0:N-1][0:M-1])

 Generating copyout(tmp[0:9])

 Generating compute capability 2.0 binary

 21, Parallelization would require privatization of array 'tmp[0:9]'

 22, Parallelization would require privatization of array 'tmp[0:9]'

 Accelerator kernel generated

 21, #pragma acc for seq

 22, #pragma acc for seq

 Non-stride-1 accesses for array 'A'

 CC 2.0 : 18 registers; 0 shared, 64 constant,

 0 local memory bytes; 16% occupancy

A CUDA kernel is generated, but it will be very inefficient because it is sequential. But if you further

specify using a loop pragma private clause that it is safe to privatize array tmp in the scope of the

do j loop:

#pragma acc region
{
 for (int i=0; i<N;++i) {
#pragma acc for private(tmp[0:9])
 for (int j=0; j<M;++j) {
 for (int ii=0; ii<10;++ii) {
 tmp[ii] = ii;
 }
 sum=0;
 for (int ii=0; ii<10;++ii) {
 sum+=tmp[ii];
 }
 A[i][j] = sum;
 }

 }
}

It will provide the PGI compiler with the information necessary to successfully compile the nested loop

for execution on an NVIDIA GPU:

% pgcc -ta=nvidia -Minfo=accel,cc20 private1.c
main:
 19, Generating copyout(A[0:N-1][0:M-1])
 Generating compute capability 2.0 binary
 21, Loop is parallelizable
 23, Loop is parallelizable
 Accelerator kernel generated
 21, #pragma acc for parallel, vector(16) /*blockIdx.y threadIdx.y*/
 23, #pragma acc for parallel, vector(16) /*blockIdx.x threadIdx.x*/
 CC 2.0 : 18 registers; 8 shared, 64 constant,

 0 local memory bytes; 100% occupancy

Trick #3: Make while loops parallelizable
The PGI Accelerator compiler can’t automatically convert while loops into a form suitable for running on

the GPU. But it is often possible to manually convert a while loop into a countable rectangular do loop.

For example, if the following code is compiled:

#pragma acc region
{
 while (i<N && found == -1) {
 if (A[i] >= 102.0f) {
 found = i;
 }
 ++i;
 }
}

Informational messages similar to the following will be produced:

% pgcc -ta=nvidia -Minfo=accel while.c
 20, Accelerator restriction: loop has multiple exits
 Accelerator region ignored

But if the loop is restructured into the following form as a for loop:

#pragma acc region
{
 for (i=0;i<N;++i) {
 if (A[i] >= 102.0f) {
 found[i] = i;
 } else {
 found[i] = -1;
 }
 }

}
i=0;
while (i < N && found[i] < 0) {
 ++i;
}

It will provide the PGI compiler with the information necessary to successfully compile the nested loop

for execution on an NVIDIA GPU:

% pgcc -ta=nvidia,cc20 -Minfo=accel while1.c
main:
 21, Generating copyin(A[0:N-1])
 Generating copyout(found[0:N-1])
 Generating compute capability 2.0 binary
 23, Loop is parallelizable
 Accelerator kernel generated
 23, #pragma acc for parallel, vector(256)/*blockIdx.x threadIdx.x*/
 Using register for 'found'
 CC 2.0 : 8 registers; 4 shared, 60 constant,
 0 local memory bytes; 100% occupancy

Trick #4: Rectangles are better than triangles
All loops must be rectangular. For triangular loops, the compiler will either serialize the inner loop or

make the inner loop rectangular by adding an implicit if statement to skip the lower part of the triangle.

For example, if the following triangular loop is compiled:

#pragma acc region copyout(A[0:N-1][0:M-1])
{
 for (int i=0; i<N;++i) {
 for (int j=i; j<M;++j) {
 A[i][j] = i+j;
 }
 }

}

Informational messages similar to the following will be produced:

Here’s the triangular loop!

% pgcc -ta=nvidia,cc20 -Minfo=accel triangle.c

main:

 22, Generating copyout(A[:N-1][:M-1])

 Generating compute capability 2.0 binary

 24, Loop is parallelizable

 Accelerator kernel generated

 24, #pragma acc for parallel, vector(256) /*blockIdx.x threadIdx.x*/

 CC 2.0 : 18 registers; 4 shared, 60 constant,

 0 local memory bytes; 100% occupancy

 25, Loop is parallelizable

While the loops seemed to have been parallelized, the resulting code will likely fail. Why? Because the

compiler copies out the entire A array from device to host and in the process copies garbage values into

the lower triangle of the host copy of A. However, if a copy clause is specified on the accelerator region

boundary, correct code will be generated. For example, if the following code is compiled:

#pragma acc region copy(A[0:N-1][0:M-1])
{
 for (int i=0; i<N;++i) {
 for (int j=i; j<M;++j) {
 A[i][j] = i+j;
 }
 }

}

Informational messages similar to the following will be produced :

% pgcc -ta=nvidia,cc20 -Minfo=accel triangle1.c
main:
 22, Generating copy(A[:N-1][:M-1])
 Generating compute capability 2.0 binary
 24, Loop is parallelizable
 Accelerator kernel generated
 24, #pragma acc for parallel, vector(256) /*blockIdx.x threadIdx.x*/
 CC 2.0 : 18 registers; 4 shared, 60 constant,
 0 local memory bytes; 100% occupancy
 25, Loop is parallelizable

Trick #5: Restructure linearized arrays with computed indices
It is not uncommon for legacy codes to use computed indices for computations on multi-dimensional

arrays that have been linearized. For example, if the following loop with a computed index into the

linearized array A is compiled:

#pragma acc region copyout(A[0:N*M-1])
{
 for (int i=0; i<N;++i) {
 for (int j=0; j<M;++j) {
 idx = (i*N)+j;
 A[idx] = B[i][j];
 }

 }

}

Informational messages similar to the following will be produced:

% pgcc -ta=nvidia,cc20 -Minfo=accel linearization.c
main:
 23, Generating copyout(A[:M*N-1])
 Generating copyin(B[0:N-1][0:M-1])
 Generating compute capability 2.0 binary
 25, Complex loop carried dependence of '*(A)' prevents parallelization
 26, Complex loop carried dependence of '*(A)' prevents parallelization
 Parallelization would require privatization of array 'A[:M*N-1]'
 Accelerator kernel generated
 25, #pragma acc for seq
 26, #pragma acc for seq
 Non-stride-1 accesses for array 'B'
 CC 2.0 : 15 registers; 0 shared, 72 constant,
 0 local memory bytes; 16% occupancy

The code will run on the GPU but it will execute sequentially and run very slowly. You have two

options. First, the loop can be restructured to remove linearization:

#pragma acc region copyout(A[0:N-1][0:M-1])

{

 for (int i=0; i<N;++i) {

 for (int j=0; j<M;++j) {

 A[i][j] = B[i][j];

 }

 }

}

Allowing the compiler to successfully generate a parallel GPU code:

% pgcc -ta=nvidia,cc20 -Minfo=accel linearization1.c

main:

 24, Generating copyout(A[:N-1][:M-1])

 Generating copyin(B[0:N-1][0:M-1])

 Generating compute capability 2.0 binary

 26, Loop is parallelizable

 27, Loop is parallelizable

 Accelerator kernel generated

 26, #pragma acc for parallel, vector(16) /*blockIdx.y threadIdx.y*/

 27, #pragma acc for parallel, vector(16) /*blockIdx.x threadIdx.x*/

 CC 2.0 : 12 registers; 8 shared, 64 constant,

 0 local memory bytes; 100% occupancy

Or second, independent clauses can be specified on the do loops to provide the compiler with the

information it needs to safely parallelize the loops:

#pragma acc region copyout(A[0:N*M-1])

{

#pragma acc for independent

 for (int i=0; i<N;++i) {

#pragma acc for independent

 for (int j=0; j<M;++j) {

 idx = (i*N)+j;

 A[idx] = B[i][j];

 }

 }

}

Trick #6: Privatize live-out scalars
It is common for loops to initialize scalar work variables, and for those variables to be referenced or re-

used after the loop. Such a variable is called a “live out” scalar, because correct execution may depend

on its having the last value it was assigned in a serial execution of the loop(s). For example, if the

following loop with a live out variable idx is compiled:

#pragma acc region

{

 for (int i=0; i<N;++i) {

 for (int j=0; j<M;++j) {

 idx = i+j;

 A[i][j] = idx;

 }

 }

}

printf("%d %d %d\n",idx, A[1][1], A[2][1]);

Informational messages similar to the following will be produced:

% pgcc -ta=nvidia,cc20 -Minfo=accel live.c
main:
 20, Generating copyout(A[0:N-1][0:M-1])
 Generating compute capability 2.0 binary
 22, Loop is parallelizable
 23, Inner sequential loop scheduled on accelerator
 Accelerator kernel generated
 22, #pragma acc for parallel, vector(32) /*blockIdx.x threadIdx.x*/
 23, #pragma acc for seq
 Non-stride-1 accesses for array 'A'
 CC 2.0 : 17 registers; 4 shared, 60 constant,
 0 local memory bytes; 16% occupancy
 24, Accelerator restriction: induction variable live-out from loop: idx
 25, Accelerator restriction: induction variable live-out from loop: idx

While some code will run on the GPU, the inner loop is executed sequentially. Looking at the code, the

use of idx in the print statement is only for debugging purposes. In this case, you know the

computations will still be valid even if idx is privatized so the code can be modified as follows:

#pragma acc region

{

#pragma acc for private(idx)

 for (int i=0; i<N;++i) {

 for (int j=0; j<M;++j) {

 idx = i+j;

 A[i][j] = idx;

 }

 }

}

printf("%d %d %d\n",idx, A[1][1], A[2][1])

A much more efficient fully parallel kernel will be generated:

% pgcc -ta=nvidia,cc20 -Minfo=accel live1.c

main:

 20, Generating copyout(A[0:N-1][0:M-1])

 Generating compute capability 2.0 binary

 23, Loop is parallelizable

 24, Loop is parallelizable

 Accelerator kernel generated

 23, #pragma acc for parallel, vector(16) /*blockIdx.y threadIdx.y*/

 24, #pragma acc for parallel, vector(16) /*blockIdx.x threadIdx.x*/

 CC 2.0 : 10 registers; 8 shared, 60 constant,

 0 local memory bytes; 100% occupancy

Note that the value printed out for idx in the print statement will be different than in a sequential

execution of the program.

Trick #7: Inline function calls in directives regions
One of the most common barriers to maximum GPU performance is the presence of function calls in the

region. To run efficiently on the GPU, the compiler must be able to inline function calls.

There are two ways to invoke automatic function inlining with the PGI Accelerator compilers:

First, if the function(s) to be inlined are in the same file as the section of code containing the accelerator

region, you can use the -Minline compiler command-line option to enable automatic procedure

inlining. This will enable automatic inlining of functions throughout the file, not only within the

accelerator region.

If you would like to restrict inlining to specific functions, say func1 and func2, use the

option -Minline=func1,func2. To learn more about controlling inlining with -Minline, just

type pgcc -help -Minline in a shell window.

Second, if the function(s) to be inlined are in a separate file from the code containing the accelerator

region, you need to use the inter-procedural optimizer with automatic inlining enabled by specifying

-Mipa=inline on the compiler command-line. -Mipa is both a compile-time and link-time option,

so you need to specify it on the command-line when linking your program as well for inlining to occur.

As with -Minline, you can learn more about controlling inter-procedural optimizations and inlining by

using pgcc -help -Mipa.

The following types of C and C++ functions cannot be inlined:

• Functions containing switch statements

• Functions which reference a static variable whose definition is nested within the function

• Function which accept a variable number of arguments

Certain C/C++ functions can only be inlined into the file that contains their definition:

• Static functions

• Functions which call a static function

• Functions which reference a static variable

If you encounter these or any other restrictions that prevent automatic inlining of functions called in

accelerator regions, the only alternative is to inline them manually.

Trick #8: Watch for runtime device errors
Once you have successfully offloaded code in an accelerator region for execution on the GPU, you can

still encounter errors at runtime due to common porting or coding errors that are not exposed by

execution on the host CPU.

If you encounter the following error message when executing a program:

Call to cuMemcpyDtoH returned error 700: Launch failed

This typically occurs when the device kernel returns an execution error due to an out-of-bounds or

other memory access violation. For example the following code will generate such an error:

#pragma acc region copyin(B[0:N-1][0:M-1])
{
 for (int i=0; i<N;++i) {
 for (int j=0; j<M;++j) {
 A[i][j] = B[i][j+1];
 }
 }

}

The only way to isolate such errors currently is through inspection of the code in the accelerator region,

or by compiling and executing on the host using the -Mbounds command-line option which will

instrument the executable to print an error message for out-of-bounds array accesses.

If you encounter the following error message when executing a program:

Call to cuMemcpy2D returned error 1: Invalid value

This typically occurs if there is an error copying data to/from the device. For example, the following

code will generate such an error:

#pragma acc region copyin(B[0:N-1][0:M+1])
{
 for (int i=0; i<N;++i) {
 for (int j=0; j<M;++j) {
 A[i][j] = B[i][j];
 }
 }

}

The only way to isolate such errors currently is through inspection of the code in the accelerator region

or inspection of the -Minfo informational messages at compile time.

Trick #9: Accelerating C++
The PGI Accelerator programming model is currently supported in Fortran 2003 and C99, but is not

directly supported in C++. However, it is possible to offload portions of C++ applications by refactoring

code regions and loop nests into extern ‘C’ program units and compiling them with the PGI Accelerator C

compiler. While this requires additional work, the resulting code will still be 100% portable to other

compilers and platforms.

Code that is heavily reliant on C++ will be more difficult to port using PGI Accelerator C than code that is

already C99 or mostly so.

To build C++ applications with PGI Accelerator C program units, compile each C++ file (including the

main program) with the PGI C++ compiler, each C file with the PGI C compiler, and link the executable

with the PGI C compiler driver. For example, a file main.cpp containing this C++ main program:

#include <iostream>

extern "C" int matit();

int

main()

{

 int i;

 i=matit();

 cout << "return from matit ==" << i <<endl;

}

And a file csub.c containing the C function matit and potentially several other C functions it calls can be

compiled using the following steps :

% pgcpp -fast -c main.cpp <ret>

% pgcc -fast -ta=nvidia -c csub.c <ret>

% pgcc -pgcpplibs -ta=nvidia:time main.o csub.o <ret>

The option -pgcpplibs to the pgcc compiler driver will append all required C++ libraries to the link

line and enable linking of executables where the main program and potentially other program units are

C++.

Trick #10: Be Aware of Data Movement
Once you have successfully offloaded a CUDA kernel using PGI Accelerator pragmas, you should

understand and try to optimize the data movement between host memory and GPU device memory.

You can see exactly what data movement is occurring for each generated CUDA kernel by looking at the

informational messages emitted by the PGI Accelerator compiler:

% pgcc -ta=nvidia test.c -Minfo=accel

testgpu1:

 49, Generating copyin(a[:19999])

 Generating copyin(ix[0:97][0:197])

 Generating copy(b[1:98][1:198])

 ...

Arrays a and ix being copied from host memory to

GPU device memory before CUDA kernel launch

Elements of arrays b copied both to the GPU and

back to host memory after CUDA kernel execution

You can see how much execution time is spent moving data between host memory and device memory

by linking your executable with the time sub-option added to -ta=nvidia command-line option:

% pgcc -ta=nvidia,time test.c

% a.out

Accelerator Kernel Timing data

test.c

 testgpu1

 49: region entered 1000 times

 time(us): total=22568519 init=107681 region=22460838

 kernels=20116 data=21971428

 w/o init: total=22460838 max=50259 min=22290 avg=22460

 52: kernel launched 1000 times

 grid: [13x7] block: [16x16]

 time(us): total=20116 max=28 min=18 avg=20

Once you have examined and timed the data movement required at accelerator region boundaries,

there are several techniques you can use to minimize and optimize data movement.

Trick #11: Use Contiguous Memory for Multi-dimensional Arrays
In this example, arrays b and ix are declared as pointer arrays. Because data is copied to and from the

host and device in contiguous segments, each row of these arrays will be copied separately. We can

speed up the data transfers by dynamically allocating the two pointer arrays as a single contiguous block

of memory and passing them to our function as a multi-dimensional C99 variable length array (VLA).

With this approach, both arrays can be copied in a single transfer.

float *restrict b0;

int *restrict ix;

void

testgpu1(int N, int M, float b[N][M], float *restrict a, int ix[N][M],

 const int niter)

{

 int i,j;

 for (int it=1; it <= niter ; ++it) {

#pragma acc region copyin(a[0:(N*M)-1])

 {

 for(i = 1; i < N-1; ++i){

 for(j = 1; j < M-1; ++j){

 b[i][j] += 0.5f*(a[ix[i-1][j-1]] + a[i*M+j]);

 }

 }

 }

 }

}

…

testgpu1(N, M, b0, a0, ix, 1000);

Running the program again after linking once more with the -ta=nvidia,time command-line

option shows these results;

21,971,428 microseconds spent on moving data

between host memory and GPU device

20,116 microseconds spent executing kernels

%a.out

Accelerator Kernel Timing data

test1a.c

 testgpu1

 47: region entered 1000 times

 time(us): total=1090302 init=102621 region=987681

 kernels=20471 data=497893

 w/o init: total=987681 max=1144 min=980 avg=987

 50: kernel launched 1000 times

 grid: [13x7] block: [16x16]

 time(us): total=20471 max=32 min=19 avg=20

Trick #12: Use Data Regions to Avoid Inefficiencies
In this test example, the PGI Accelerator compute region is contained within a loop. The data are being

unnecessarily copied between the host and device every iteration of the loop. Instead, the data need

only be copied to the device once before the outer loop and back to the host after the loop. To

accomplish this, we will add a data region.

void

testgpu1(int N, int M, float b[N][M], float *restrict a, int ix[N][M],

 const int niter)

{

 int i,j;

#pragma acc data region copyin(a[0:(N*M)-1]), copy(b[0:N-1][0:M-1]),

 copyin(ix[0:N-1][0:M-1])

 {

 for (int it=1; it <= niter ; ++it) {

#pragma acc region

 {

 for(i = 1; i < N-1; ++i){

 for(j = 1; j < M-1; ++j){

 b[i][j] += 0.5f*(a[ix[i-1][j-1]] + a[i*M+j]);

 }

 }

 }}}

}

Running the program again after linking once more with the -ta=nvidia,time command-line

option shows these results:

% a.out

Time to move data between host memory and

GPU device memory falls by over 97%

Kernels execution time is remains unchanged

Accelerator Kernel Timing data

 testgpu1

 49: region entered 1000 times

 time(us): total=139372 init=106 region=139266

 kernels=17941 data=0

 w/o init: total=139266 max=213 min=136 avg=139

 52: kernel launched 1000 times

 grid: [13x7] block: [16x16]

 time(us): total=17941 max=28 min=17 avg=17

 testgpu1

 46: region entered 1 time

 time(us): total=244478 init=103975 region=140503

 data=514

 w/o init: total=140503 max=140503 min=140503 avg=140503

Result with only one data transfer each way.

No data movement in the compute kernel

