
12 Tips for Maximum Performance with  

PGI Directives in C 
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1. Eliminate Pointer Arithmetic 
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5. Restructure Linearized Arrays with Computed indices 

6. Privatize Live-out Scalars 

7. Inline Function Calls in Directives Regions 

8. Watch for Runtime Device Errors  

9. Accelerating C++ 

10. Be Aware of Data Movement 

11. Use Contiguous Memory for Multi-dimensional Arrays  

12. Use Data Regions to Avoid Inefficiencies 

 

Trick #1: Eliminate Pointer Arithmetic 
Pointer arithmetic is often used to swap pointers or increment through an array.  This code is currently 

not allowed within compute regions.  For example, the following routine: 

void memcpy(float * restrict A, float * restrict B, int count) { 
float* ptrA = A; 
float* ptrB = B; 
   while (count--) { 
       *ptrA++ = *prtB++; 
   } 
   return; 
} 

would need to be rewritten to use array indexing: 



void memcpy(float *restrict A, float * restrict B, int count) { 
#pragma acc region 
{ 
    for (int i=0; i<count;++i) { 
        A[i] = B[i]; 
    } 
} 

return; 
} 

Note the use of the C99 restrict keyword.  This asserts to the compiler that the arrays do not overlap and 

hence updates to one will not affect others.  

Trick #2: Privatize arrays 
Some loops will fail to offload because parallelization is inhibited by arrays that must be privatized for 

correct parallel execution.  In an iterative loop, data which is used only during a particular iteration can 

be declared private.  And in general code regions, data which is used within the region but is not 

initialized prior to the region, and is re-initialized prior to any use after the region can be declared 

private.   

For example, if the following code is compiled: 

#pragma acc region 

{ 

   for (int i=0; i<N;++i) { 

      for (int j=0; j<M;++j) { 

         for (int ii=0; ii<10;++ii) { 

            tmp[ii] = ii; 

         } 

         sum=0; 

         for (int ii=0; ii<10;++ii) { 

            sum+=tmp[ii]; 

         } 

         A[i][j] = sum; 

      } 

   } 

} 

Informational messages similar to the following will be produced: 

% pgcc -ta=nvidia,cc20 -Minfo=accel private.c   

main: 

     19, Generating copyout(A[0:N-1][0:M-1]) 

         Generating copyout(tmp[0:9]) 

         Generating compute capability 2.0 binary 

     21, Parallelization would require privatization of array 'tmp[0:9]' 

     22, Parallelization would require privatization of array 'tmp[0:9]' 

         Accelerator kernel generated 

         21, #pragma acc for seq 

         22, #pragma acc for seq 

             Non-stride-1 accesses for array 'A' 

             CC 2.0 : 18 registers; 0 shared, 64 constant,  

                      0 local memory bytes; 16% occupancy 



 

A CUDA kernel is generated, but it will be very inefficient because it is sequential.  But if you further 

specify using a loop pragma private clause that it is safe to privatize array tmp in the scope of the 

do j loop: 

#pragma acc region 
{ 
   for (int i=0; i<N;++i) { 
#pragma acc for private(tmp[0:9]) 
      for (int j=0; j<M;++j) { 
         for (int ii=0; ii<10;++ii) { 
            tmp[ii] = ii; 
         } 
         sum=0; 
         for (int ii=0; ii<10;++ii) { 
           sum+=tmp[ii]; 
         } 
         A[i][j] = sum; 
      } 

   } 
} 

It will provide the PGI compiler with the information necessary to successfully compile the nested loop 

for execution on an NVIDIA GPU: 

% pgcc -ta=nvidia -Minfo=accel,cc20 private1.c   
main: 
     19, Generating copyout(A[0:N-1][0:M-1]) 
         Generating compute capability 2.0 binary 
     21, Loop is parallelizable 
     23, Loop is parallelizable 
         Accelerator kernel generated 
         21, #pragma acc for parallel, vector(16) /*blockIdx.y threadIdx.y*/ 
         23, #pragma acc for parallel, vector(16) /*blockIdx.x threadIdx.x*/ 
            CC 2.0 : 18 registers; 8 shared, 64 constant,  

                     0 local memory bytes; 100% occupancy 

Trick #3: Make while loops parallelizable 
The PGI Accelerator compiler can’t automatically convert while loops into a form suitable for running on 

the GPU.  But it is often possible to manually convert a while loop into a countable rectangular do loop.  

For example, if the following code is compiled: 

#pragma acc region 
{ 
   while (i<N && found == -1)  { 
      if (A[i] >= 102.0f) { 
        found = i; 
      } 
      ++i; 
   } 
} 
 



Informational messages similar to the following will be produced: 

% pgcc -ta=nvidia -Minfo=accel while.c  
     20, Accelerator restriction: loop has multiple exits 
         Accelerator region ignored 

But if the loop is restructured into the following form as a for loop: 

#pragma acc region 
{ 
   for (i=0;i<N;++i) { 
      if (A[i] >= 102.0f) { 
        found[i] = i; 
      } else { 
        found[i] = -1; 
      } 
   } 

} 
i=0; 
while (i < N && found[i] < 0) { 
  ++i; 
} 

It will provide the PGI compiler with the information necessary to successfully compile the nested loop 

for execution on an NVIDIA GPU:  

% pgcc -ta=nvidia,cc20 -Minfo=accel while1.c  
main: 
     21, Generating copyin(A[0:N-1]) 
         Generating copyout(found[0:N-1]) 
         Generating compute capability 2.0 binary 
     23, Loop is parallelizable 
         Accelerator kernel generated 
         23, #pragma acc for parallel, vector(256)/*blockIdx.x threadIdx.x*/ 
             Using register for 'found' 
             CC 2.0 : 8 registers; 4 shared, 60 constant,  
                      0 local memory bytes; 100% occupancy 

Trick #4: Rectangles are better than triangles 
All loops must be rectangular.  For triangular loops, the compiler will either serialize the inner loop or 

make the inner loop rectangular by adding an implicit if statement to skip the lower part of the triangle.  

For example, if the following triangular loop  is compiled: 

#pragma acc region copyout(A[0:N-1][0:M-1]) 
{ 
   for (int i=0; i<N;++i) { 
      for (int j=i; j<M;++j) { 
         A[i][j] = i+j; 
      } 
   } 

} 
 

Informational messages similar to the following will be produced: 

Here’s the triangular loop! 



% pgcc -ta=nvidia,cc20 -Minfo=accel triangle.c  

main: 

     22, Generating copyout(A[:N-1][:M-1]) 

         Generating compute capability 2.0 binary 

     24, Loop is parallelizable 

         Accelerator kernel generated 

         24, #pragma acc for parallel, vector(256) /*blockIdx.x threadIdx.x*/ 

             CC 2.0 : 18 registers; 4 shared, 60 constant,  

                      0 local memory bytes; 100% occupancy 

     25, Loop is parallelizable 

 

While the loops seemed to have been parallelized, the resulting code will likely fail.  Why?  Because the 

compiler copies out the entire A array from device to host and in the process copies garbage values into 

the lower triangle of the host copy of A. However, if a copy clause is specified on the accelerator region 

boundary, correct code will be generated. For example, if the following code is compiled: 

#pragma acc region copy(A[0:N-1][0:M-1]) 
{ 
   for (int i=0; i<N;++i) { 
      for (int j=i; j<M;++j) { 
         A[i][j] = i+j; 
      } 
   } 

} 

Informational messages similar to the following will be produced : 

% pgcc -ta=nvidia,cc20 -Minfo=accel triangle1.c  
main: 
     22, Generating copy(A[:N-1][:M-1]) 
         Generating compute capability 2.0 binary 
     24, Loop is parallelizable 
         Accelerator kernel generated 
         24, #pragma acc for parallel, vector(256) /*blockIdx.x threadIdx.x*/ 
             CC 2.0 : 18 registers; 4 shared, 60 constant,  
                       0 local memory bytes; 100% occupancy 
     25, Loop is parallelizable 

 

Trick #5: Restructure linearized arrays with computed indices 
It is not uncommon for legacy codes to use computed indices for computations on multi-dimensional 

arrays that have been linearized.  For example, if the following loop with a computed index into the 

linearized array A is compiled: 

#pragma acc region copyout(A[0:N*M-1]) 
{ 
   for (int i=0; i<N;++i) { 
      for (int j=0; j<M;++j) { 
         idx = (i*N)+j; 
         A[idx] = B[i][j]; 
      } 



   } 

} 

Informational messages similar to the following will be produced: 

% pgcc -ta=nvidia,cc20 -Minfo=accel linearization.c 
main: 
     23, Generating copyout(A[:M*N-1]) 
         Generating copyin(B[0:N-1][0:M-1]) 
         Generating compute capability 2.0 binary 
     25, Complex loop carried dependence of '*(A)' prevents parallelization 
     26, Complex loop carried dependence of '*(A)' prevents parallelization 
         Parallelization would require privatization of array 'A[:M*N-1]' 
         Accelerator kernel generated 
         25, #pragma acc for seq 
         26, #pragma acc for seq 
             Non-stride-1 accesses for array 'B' 
             CC 2.0 : 15 registers; 0 shared, 72 constant,  
                 0 local memory bytes; 16% occupancy 

The code will run on the GPU but it will execute sequentially and run very slowly.  You have two 

options.  First, the loop can be restructured to remove linearization: 

#pragma acc region copyout(A[0:N-1][0:M-1]) 

{ 

   for (int i=0; i<N;++i) { 

      for (int j=0; j<M;++j) { 

         A[i][j] = B[i][j]; 

      } 

   } 

} 

Allowing the compiler to successfully generate a parallel GPU code: 

% pgcc -ta=nvidia,cc20 -Minfo=accel linearization1.c 

main: 

     24, Generating copyout(A[:N-1][:M-1]) 

         Generating copyin(B[0:N-1][0:M-1]) 

         Generating compute capability 2.0 binary 

     26, Loop is parallelizable 

     27, Loop is parallelizable 

         Accelerator kernel generated 

         26, #pragma acc for parallel, vector(16) /*blockIdx.y threadIdx.y*/ 

         27, #pragma acc for parallel, vector(16) /*blockIdx.x threadIdx.x*/ 

             CC 2.0 : 12 registers; 8 shared, 64 constant,  

                      0 local memory bytes; 100% occupancy 

Or second, independent clauses can be specified on the do loops to provide the compiler with the 

information it needs to safely parallelize the loops: 

#pragma acc region copyout(A[0:N*M-1]) 

{ 

#pragma acc for independent 

   for (int i=0; i<N;++i) { 

#pragma acc for independent 



      for (int j=0; j<M;++j) { 

         idx = (i*N)+j; 

         A[idx] = B[i][j]; 

      } 

   } 

} 

Trick #6: Privatize live-out scalars 
It is common for loops to initialize scalar work variables, and for those variables to be referenced or re-

used after the loop.  Such a variable is called a “live out” scalar, because correct execution may depend 

on its having the last value it was assigned in a serial execution of the loop(s).  For example, if the 

following loop with a live out variable idx is compiled: 

#pragma acc region 

{ 

   for (int i=0; i<N;++i) { 

      for (int j=0; j<M;++j) { 

         idx = i+j; 

         A[i][j] = idx; 

      } 

   } 

} 

printf("%d %d %d\n",idx, A[1][1], A[2][1]); 

Informational messages similar to the following will be produced: 

% pgcc -ta=nvidia,cc20 -Minfo=accel live.c 
main: 
     20, Generating copyout(A[0:N-1][0:M-1]) 
         Generating compute capability 2.0 binary 
     22, Loop is parallelizable 
     23, Inner sequential loop scheduled on accelerator 
         Accelerator kernel generated 
         22, #pragma acc for parallel, vector(32) /*blockIdx.x threadIdx.x*/ 
         23, #pragma acc for seq 
             Non-stride-1 accesses for array 'A' 
             CC 2.0 : 17 registers; 4 shared, 60 constant,  
                       0 local memory bytes; 16% occupancy 
     24, Accelerator restriction: induction variable live-out from loop: idx 
     25, Accelerator restriction: induction variable live-out from loop: idx 

While some code will run on the GPU, the inner loop is executed sequentially.  Looking at the code, the 

use of idx in the print statement is only for debugging purposes.  In this case, you know the 

computations will still be valid even if idx is privatized so the code can be modified as follows: 

#pragma acc region 

{ 

#pragma acc for private(idx) 

   for (int i=0; i<N;++i) { 

      for (int j=0; j<M;++j) { 

         idx = i+j; 

         A[i][j] = idx; 

      } 

   } 



} 

printf("%d %d %d\n",idx, A[1][1], A[2][1]) 

A much more efficient fully parallel kernel will be generated: 

% pgcc -ta=nvidia,cc20 -Minfo=accel live1.c 

main: 

     20, Generating copyout(A[0:N-1][0:M-1]) 

         Generating compute capability 2.0 binary 

     23, Loop is parallelizable 

     24, Loop is parallelizable 

         Accelerator kernel generated 

         23, #pragma acc for parallel, vector(16) /*blockIdx.y threadIdx.y*/ 

         24, #pragma acc for parallel, vector(16) /*blockIdx.x threadIdx.x*/ 

             CC 2.0 : 10 registers; 8 shared, 60 constant,  

                      0 local memory bytes; 100% occupancy 

Note that the value printed out for idx in the print statement will be different than in a sequential 

execution of the program.  

Trick #7: Inline function calls in directives regions 
One of the most common barriers to maximum GPU performance is the presence of function calls in the 

region. To run efficiently on the GPU, the compiler must be able to inline function calls.   

There are two ways to invoke automatic function inlining with the PGI Accelerator compilers: 

First, if the function(s) to be inlined are in the same file as the section of code containing the accelerator 

region, you can use the -Minline compiler command-line option to enable automatic procedure 

inlining. This will enable automatic inlining of functions throughout the file, not only within the 

accelerator region.  

If you would like to restrict inlining to specific functions, say func1 and func2, use the 

option -Minline=func1,func2.  To learn more about controlling inlining with -Minline, just 

type pgcc -help -Minline in a shell window. 

Second, if the function(s) to be inlined are in a separate file from the code containing the accelerator 

region, you need to use the inter-procedural optimizer with automatic inlining enabled by specifying  

-Mipa=inline on the compiler command-line.  -Mipa is both a compile-time and link-time option, 

so you need to specify it on the command-line when linking your program as well for inlining to occur.  

As with -Minline, you can learn more about controlling inter-procedural optimizations and inlining by 

using pgcc -help -Mipa. 

The following types of C and C++ functions cannot be inlined: 

• Functions containing switch statements 

• Functions which reference a static variable whose definition is nested within the function 

• Function which accept a variable number of arguments 

 
Certain C/C++ functions can only be inlined into the file that contains their definition: 



• Static functions 

• Functions which call a static function 

• Functions which reference a static variable 

 
If you encounter these or any other restrictions that prevent automatic inlining of functions called in 

accelerator regions, the only alternative is to inline them manually. 

Trick #8: Watch for runtime device errors  
Once you have successfully offloaded code in an accelerator region for execution on the GPU, you can 

still encounter errors at runtime due to common porting or coding errors that are not exposed by 

execution on the host CPU.   

If you encounter the following error message when executing a program: 

Call to cuMemcpyDtoH returned error 700: Launch failed 

 
This typically occurs when the device kernel returns an execution error due to an out-of-bounds or 

other memory access violation.  For example the following code will generate such an error: 

#pragma acc region copyin(B[0:N-1][0:M-1]) 
{ 
   for (int i=0; i<N;++i) { 
      for (int j=0; j<M;++j) { 
         A[i][j] = B[i][j+1]; 
      } 
   } 

}  

The only way to isolate such errors currently is through inspection of the code in the accelerator region, 

or by compiling and executing on the host using the -Mbounds command-line option which will 

instrument the executable to print an error message for out-of-bounds array accesses.  

If you encounter the following error message when executing a program: 

Call to cuMemcpy2D returned error 1: Invalid value 

 
This typically occurs if there is an error copying data to/from the device.  For example, the following 

code will generate such an error: 

#pragma acc region copyin(B[0:N-1][0:M+1]) 
{ 
   for (int i=0; i<N;++i) { 
      for (int j=0; j<M;++j) { 
         A[i][j] = B[i][j]; 
      } 
   } 

}  

The only way to isolate such errors currently is through inspection of the code in the accelerator region 

or inspection of the -Minfo informational messages at compile time. 



Trick #9: Accelerating C++ 
The PGI Accelerator programming model is currently supported in Fortran 2003 and C99, but is not 

directly supported in C++. However, it is possible to offload portions of C++ applications by refactoring 

code regions and loop nests into extern ‘C’ program units and compiling them with the PGI Accelerator C 

compiler. While this requires additional work, the resulting code will still be 100% portable to other 

compilers and platforms. 

Code that is heavily reliant on C++ will be more difficult to port using PGI Accelerator C than code that is 

already C99 or mostly so.  

To build C++ applications with PGI Accelerator C program units, compile each C++ file (including the 

main program) with the PGI C++ compiler, each C file with the PGI C compiler, and link the executable 

with the PGI C compiler driver.  For example, a file main.cpp containing this C++ main program: 

#include <iostream> 

extern "C" int matit(); 

int 

main() 

{ 

    int i; 

    i=matit(); 

    cout << "return from matit ==" << i <<endl; 

} 

And a file csub.c containing the C function matit and potentially several other C functions it calls can be 

compiled using the following steps : 

% pgcpp -fast -c main.cpp <ret> 

% pgcc -fast -ta=nvidia -c csub.c <ret> 

% pgcc -pgcpplibs -ta=nvidia:time main.o csub.o <ret> 

The option -pgcpplibs to the pgcc compiler driver will append all required C++ libraries to the link 

line and enable linking of executables where the main program and potentially other program units are 

C++. 

Trick #10: Be Aware of Data Movement 
Once you have successfully offloaded a CUDA kernel using PGI Accelerator pragmas, you should 

understand and try to optimize the data movement between host memory and GPU device memory.   

You can see exactly what data movement is occurring for each generated CUDA kernel by looking at the 

informational messages emitted by the PGI Accelerator compiler: 

% pgcc -ta=nvidia test.c -Minfo=accel 

testgpu1: 

     49, Generating copyin(a[:19999]) 

         Generating copyin(ix[0:97][0:197]) 

         Generating copy(b[1:98][1:198]) 

         ...  

Arrays a and ix being copied from host memory to 

GPU device memory before CUDA kernel launch  

Elements of arrays b copied both to the GPU and 

back to host memory after CUDA kernel execution  



You can see how much execution time is spent moving data between host memory and device memory 

by linking your executable with the time sub-option added to  -ta=nvidia command-line option: 

% pgcc -ta=nvidia,time test.c  

% a.out 

 

Accelerator Kernel Timing data 

test.c 

  testgpu1 

    49: region entered 1000 times 

        time(us): total=22568519 init=107681 region=22460838 

                  kernels=20116 data=21971428 

        w/o init: total=22460838 max=50259 min=22290 avg=22460 

        52: kernel launched 1000 times 

            grid: [13x7]  block: [16x16] 

            time(us): total=20116 max=28 min=18 avg=20 

 

Once you have examined and timed the data movement required at accelerator region boundaries, 

there are several techniques you can use to minimize and optimize data movement. 

Trick #11: Use Contiguous Memory for Multi-dimensional Arrays  
In this example, arrays b and ix are declared as pointer arrays.  Because data is copied to and from the 

host and device in contiguous segments, each row of these arrays will be copied separately.  We can 

speed up the data transfers by dynamically allocating the two pointer arrays as a single contiguous block 

of memory and passing them to our function as a multi-dimensional C99 variable length array (VLA).  

With this approach, both arrays can be copied in a single transfer.  

float *restrict b0; 

int *restrict ix;  

 

void 

testgpu1( int N, int M, float b[N][M], float *restrict a, int ix[N][M],  

    const int niter ) 

{ 

    int i,j; 

    for (int it=1; it <= niter ; ++it) { 

#pragma acc region copyin(a[0:(N*M)-1]) 

   { 

        for( i = 1; i < N-1; ++i ){ 

            for( j = 1; j < M-1; ++j ){ 

              b[i][j] += 0.5f*(a[ix[i-1][j-1]] + a[i*M+j]); 

            } 

        } 

   } 

   } 

} 

… 

 

testgpu1( N, M, b0, a0, ix, 1000 ); 

 

Running the program again after linking once more with the -ta=nvidia,time command-line 

option shows these results; 
 

21,971,428 microseconds spent on moving data 

between host memory and GPU device 

20,116 microseconds spent executing kernels  



%a.out 

 

Accelerator Kernel Timing data 

test1a.c 

  testgpu1 

    47: region entered 1000 times 

        time(us): total=1090302 init=102621 region=987681 

                  kernels=20471 data=497893 

        w/o init: total=987681 max=1144 min=980 avg=987 

        50: kernel launched 1000 times 

            grid: [13x7]  block: [16x16] 

            time(us): total=20471 max=32 min=19 avg=20 

Trick #12: Use Data Regions to Avoid Inefficiencies 
In this test example, the PGI Accelerator compute region is contained within a loop.  The data are being 

unnecessarily copied between the host and device every iteration of the loop.  Instead, the data need 

only be copied to the device once before the outer loop and back to the host after the loop.  To 

accomplish this, we will add a data region. 

void 

testgpu1( int N, int M, float b[N][M], float *restrict a, int ix[N][M],  

    const int niter ) 

{ 

    int i,j; 

#pragma acc data region copyin(a[0:(N*M)-1]), copy(b[0:N-1][0:M-1]),   

                        copyin(ix[0:N-1][0:M-1]) 

   { 

    for (int it=1; it <= niter ; ++it) { 

#pragma acc region  

   { 

        for( i = 1; i < N-1; ++i ){ 

            for( j = 1; j < M-1; ++j ){ 

              b[i][j] += 0.5f*(a[ix[i-1][j-1]] + a[i*M+j]); 

            } 

        } 

   }}} 

} 

 

Running the program again after linking once more with the -ta=nvidia,time command-line 

option shows these results: 

 
% a.out 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time to move data between host memory and 

GPU device memory falls by over 97% 

Kernels execution time is remains unchanged  



 

 

 

Accelerator Kernel Timing data 

  testgpu1 

    49: region entered 1000 times 

        time(us): total=139372 init=106 region=139266 

                  kernels=17941 data=0 

        w/o init: total=139266 max=213 min=136 avg=139 

        52: kernel launched 1000 times 

            grid: [13x7]  block: [16x16]  

            time(us): total=17941 max=28 min=17 avg=17 

  testgpu1 

    46: region entered 1 time 

        time(us): total=244478 init=103975 region=140503 

                  data=514 

        w/o init: total=140503 max=140503 min=140503 avg=140503 

 

 

 

 
 

 

Result with only one data transfer each way. 

No data movement in the compute kernel  


