3D Graphics

- 2nd generation unified architecture
 - Up to 240 processor cores
 - Next generation geometry shading and stream out performance
 - Next generation dual issue
 - Next generation HW scheduler
 - NVIDIA GigaThread™ technology with increased number of threads
 - 2x registers
- Full support for Microsoft DirectX 10.0 Shader Model 4.0 and OpenGL 2.1 APIs
- Full 128-bit floating point precision through the entire rendering pipeline
- Lumenex™ Engine
 - 16× full screen antialiasing
 - Transparent multisampling and transparent supersampling
 - 16× angle independent anisotropic filtering
 - 128-bit floating point high dynamic-range (HDR) lighting with antialiasing
 - 32-bit per component floating point texture filtering and blending
 - Full speed frame buffer blending
 - Advanced lossless compression algorithms for color, texture, and z-data
 - Support for normal map compression
 - Z-cull
 - Early-Z

Video

- PureVideo HD® Technology
 - Dedicated on-chip video processor
 - High-definition H.264, VC-1, MPEG2, and WMV9 decode acceleration
 - Blu-ray dual-stream hardware acceleration (supporting HD picture-in-picture playback)
 - HDCP capable up to 2560×1600 resolution
 - Advanced spatial-temporal de-interlacing
 - Noise Reduction
 - Edge Enhancement
 - Bad Edit Correction
 - Inverse telecine (2:2 and 3:2 pull-down correction)
 - High-quality scaling
 - Video color correction
 - Microsoft Video Mixing Renderer (VMR) support
 - Dynamic Contrast and Tone Enhancements

NVIDIA Technology

- NVIDIA 2-/3-way SLI® Technology
- NVIDIA PhysX™ Technology
- NVIDIA CUDA™ Technology
 - IEEE 754R double precision support
Display
- Multi-display support
- Two dual-link DVI outputs for digital flat panel display resolutions up to 2560×1600
- Dual integrated 400 MHz RAMDACs for analog display resolutions up to 2048×1536 at 85 Hz
- Integrated HDTV encoder for analog TV-output (Component/Composite/S-Video) up to 1080i resolution
- 10-bit internal display processing
- DisplayPort output support with hardware support for 10-bit per component scanout
- Incorporates HDMI technology for combined video + audio output
- Underscan/overscan compensation and HW scaling

Interfaces
- Designed for PCI Express 2.0 x16 (PCI Express 2.0 devices are backwards-compatible with PCI Express 1.x devices)
- Up to 512-bit GDDR3 memory interface

Power and Thermal Technology
- Advanced power and thermal management for optimal acoustics, power, and performance based on usage
 - NVIDIA HybridPower™ Technology
 - Dynamic clock and voltage scaling
 - Clock gating

Operating System Support
- Windows Vista 32/64-bit
- Windows XP / Windows XP 64
- Linux
- FreeBSD x86

Process Technology
- 1.4 billion transistors in 65nm process technology
1 - The number of processor cores may vary by model.

2 - Feature requires supported video software. Features may vary by product.

3 - Playback of HDCP-protected content requires other HDCP-compatible components.

4 - NVIDIA SLI certified versions of GeForce PCI Express GPUs only. A GeForce GPU must be paired with an identical GPU, regardless of graphics card manufacturer. SLI requires sufficient system cooling and a compatible power supply. Visit www.slizone.com for more information and a listing of SLI-Certified components.

5 - Certain GeForce GPUs ship with hardware support for NVIDIA PhysX technology. NVIDIA PhysX drivers are required to experience in-game GPU PhysX acceleration. Refer to www.nvidia.com/PhysX for more information.

6 - Requires external DisplayPort transmitter. 10-bit per component scanout requires future GeForce driver support.

7 - Memory interface width may vary by model.

8 – Requires NVIDIA HybridPower™- enabled motherboard.