

Hardware Shading for Artists

Today's Speakers

Steve Burke NVIDIA

John Versluis Inevitable Entertainment

Hardware Shaders in Games

Hardware Shaders Bring Your Game Closer to Cinematic Quality

Cinematic Gaming on the Horizon

A Great time for Hardware Shading

- Convergence of film and realtime rendering
- Large number of high-end cards in market
- High-level shading languages; Cg and HLSL

Course Objective

- Discuss artist tools for using hardware shaders inside 3D applications.
- Provide artists with a better understanding of hardware shaders and the workflow of creating and editing shaders.

1. Getting Started

are Shaders

Tools for 3ds max, Maya, and XSI

Comparison of different software implementations

- Exporting to a Game Engine
- Other Tools

What Does Cg look like?

Assembly Cg RSQR R0.x, R0.x; COLOR cSpec = pow(max(0, dot(Nf, H)), phongExp).xxx; MULR R0.xyz, R0.xxxx, R4.xyzz; COLOR cPlastic = Cd * (cAmbi + cDiff) + Cs * cSpec; MOVR R5.xyz, -R0.xyzz; MOVR R3.xyz, -R3.xyzz; DP3R R3.x, R0.xyzz, R3.xyzz; SLTR R4.x, R3.x, {0.000000}.x; ADDR R3.x, {1.000000}.x, -R4.x; MULR R3.xyz, R3.xxxx, R5.xyzz; MULR R0.xyz, R0.xyzz, R4.xxxx; ADDR R0.xyz, R0.xyzz, R3.xyzz; DP3R R1.x, R0.xyzz, R1.xyzz; Simple phong shader MAXR R1.x, {0.000000}.x, R1.x; LG2R R1.x, R1.x; expressed in both MULR R1.x, {10.000000}.x, R1.x; EX2R R1.x, R1.x; assembly and Cg MOVR R1.xyz, R1.xxxx; MULR R1.xyz, {0.900000, 0.800000, 1.000000}.xyzz, R1.xyzz; DP3R R0.x, R0.xyzz, R2.xyzz; MAXR R0.x, {0.000000}.x, R0.x; MOVR R0.xyz, R0.xxxx; ADDR R0.xyz, {0.100000, 0.100000, 0.100000}.xyzz, R0.xyzz; MULR R0.xyz, {1.000000, 0.800000, 0.800000}.xyzz, R0.xyzz; ADDR R1.xyz, R0.xyzz, R1.xyzz;

How Does CgFX Relate to Cg?

- CgFX describes an entire effect Cg implements a particular function required by an effect
- CgFX describes all the parameters (and their meaning or semantics) that the app has to provide – automatic parameter discovery
- CgFX can describe complex multi-pass effects
- CgFX can handle multiple techniques

CgFX syntax is a superset of Cg syntax and can contain Cg code or assembly code

Tools for Hardware Shading

- Maya 4.5Maya Cg Plug-in
- XSI 3.0
 Built-in support for Cg

The three most popular 3d apps all support hardware shaders in the viewports

Cg implementation: 3ds max 5

Cg implementation: Maya 4.5

Supports .fx file format

Intuitive, shader-specific, artist controls

Slider control over key real-time parameters (e.g., bump depth)

Sample shaders include:

Bumpy Shiny, Toon, Anisotropic Metal, Ghostly, Refraction Dispersion, Rainbow

Integrated with Maya's lights

CgFX integrated with Maya's Hypershade

Cg implementation: Softimage XSI 3.0

Cg Integration in XSI's Render Tree

Net View for help, samples & documentation

Interactive shader builder

Scene Material V n\EuroCraw Vo 102+13-102 all + 0.5" allness " pow(north, m); steen = 25" fy" steet Color "chico" (0.2 + powchdath, mix) ScarSterry- singleScater(T2, T, r, g, albero, tickness); subsurf = 2.5" svinColor " rdut " H1" H2 " Cerro x Serro y - 600 S D GARDANDASHINESSELLS F D COL + IgRiColor *ffthecompare200mcl, in shadowroods) Est + sheets + subsurb. SOFTIMAGE elections. The services D-COL + lightColor * filtercompare/C(lar), in shadowroords; Citizen + subject. wund. **Netview page** Destroy the generally on the Direct audion was Evitor and complete a Colombia Sets a final funifore parameter using a votor misg ON . 3 9 E Smale Fitting Vehicle) CruCores Chillians Anadmore Farring

Shipping with XSI 3.0

Direct Cg code editing and compilation

Comparison of Cg Implementations

- Cg vs. CgFX
- Application-specific implementations
- DirectX and Open GL

The different software implementations are more alike than not.

Exporting to Your Game Engine

Shaders can be precompiled to assembly or compiled at run-time:

- assembly can be hand-tuned if necessary
- Shaders can be compiled to either DirectX or OpenGL
- Cg run-time available now

You will need to create an exporter to use the shaders you create with these tools

CgFX Viewer

The CgFX Viewer can be used as a production resource and a code example for implementing CgFX

2. Hardware Shad

- Designing Shaders and Using Existing Shaders
- Artist-Configurable Parameters
- Editing Shader Parameters
- Exporting Shader Parameters to Game Engine

)W

Cg Workflow Diagram

Cg supports DirectX and OpenGL

It runs on Windows and Linux

It supports
hardware from
NVIDIA, ATI,
Matrox and any
other hardware
that supports
OpenGL or
DirectX

NVIDIA CONFIDENTIAL

Create or Acquire Shaders

Shaders written in assembly or Cg

Art / Programmer Relationship

Artist

- Creates maps and tweaks
 parameters to achieve desired look
- Provides feedback to programmer

Graphics Programmer

- Creates the plumbing for shader
- •Determines which parameters are configurable

Both artist and programmer can work together for maximum efficiency. Each does what they do best.

Customizing Shader Parameters

Customizable Parameters are specific to each effect

Bitmaps can be swapped

Lights and Animation

Shader reacts to changes in light position

Saving Shader Customizations

Loading new shaders is as simple as selecting a new fx file

View Shader in Game Engine

3. The Gritty Deta

3haders

Overview of Shaders

 Hardware Shaders and Software Shaders

Artist/ Programmer teamwork

Vertex and Pixel Shaders

Vertex and Pixel Shaders offer programmability so that surfaces can be made of unique and individual 'stuff'

Vertex Shaders

Vertex Shaders are both Flexible and Quick

Pixel Shaders

Pixel shaders have limited or no knowledge of neighbouring pixels

Software Shaders are not for Real-time

Hardware Shaders are Streamlined

NVIDIA CONFIDENTIAL

Small Efficient Shaders

Multiple, narrowly-targeted shaders are more efficient/faster than large all-purpose shaders

Fallback Techniques

Several versions of the same shader can be contained into a single fx file

Lighting Models

Same textures and lighting conditions with different lighting models.

Lights are Part of the Shader Definition

Lights are not separate scene objects as they appear to be in software rendering.

Limitations

- Render to Texture Effects
- Speed Limitations
- Shadows and other complex rendering techniques

CgFX works best for editing the look of materials.

Thanks! Questions?

