“Batch, Batch, Batch:”
What Does It Really Mean?

Matthias Wloka
What Is a Batch?

• Every DrawIndexedPrimitive() is a batch
 - Submits n number of triangles to GPU
 - Same render state applies to all tris in batch
 - SetState calls prior to Draw are part of batch

• Assuming efficient use of API
 - No Draw*PrimitiveUP()
 - DrawPrimitive() permissible if warranted
 - No unnecessary state changes

• Changing state means at least two batches
Why Are Small Batches Bad?

• Games would rather draw 1M objects/batches of 10 tris each
 - versus 10 objects/batches of 1M tris each

• Lots of guesses
 - Changing state inefficient on GPUs (WRONG)
 - GPU triangle start-up costs (WRONG)
 - OS kernel transitions (WRONG)

• Future GPUs will make it better!? Really?
Let’s Write Code!

Testing Small Batch Performance

- Test app does...
 - Degenerate triangles (no fill cost)
 - 100% PostTnL cache vertices (no xform cost)
 - Static data (minimal AGP overhead)
 - ~100k tris/ frame, i.e., floor(100k/ x) draws
 - Toggles state between draw calls:
 (VBs, w/ v/ p matrix, tex-stage and alpha states)

- Timed across 1000 frames

- Theoretical maximum triangle rates!
Measured Batch-Size Performance

- Athlon XP 2.7+; NVIDIA GeForce FX 5800
- Athlon XP 2.7+; NVIDIA GeForce4 Ti 4600
- Athlon XP 2.7+; NVIDIA GeForce3 Ti 500
- Athlon XP 2.7+; NVIDIA GeForce4 MX 440
- Athlon XP 2.7+; NVIDIA GeForce2 MX/MX 400

Axes scale change
Measured Batch-Size Performance

- <130 tris/batch:
 - App is GPU-independent
 - Completely CPU-limited

Athlon XP 2.7+; NVIDIA GeForce FX 5800
Athlon XP 2.7+; NVIDIA GeForce4 Ti 4600
Athlon XP 2.7+; NVIDIA GeForce3 Ti 500
Athlon XP 2.7+; NVIDIA GeForce4 MX 440
Athlon XP 2.7+; NVIDIA GeForce2 MX/MX 400

Axis scale change
CPU-Limited?

• Then performance results only depend on
 - How fast the CPU is
 • Not GPU
 - How much data the CPU processes
 • Not how many triangles per batch!

• CPU processes draw calls (and SetStates), i.e., batches

• Let’s graph batches/s!
What To Expect If CPU Limited

- [Graph showing expected performance with different batch sizes and CPU speeds]

- fast CPU
- slow CPU

- GPU 1
- GPU 2
- GPU 3
Effects of Different CPU Speeds

Two distinct bands, corresponding to different CPU speeds.

- Fast CPU
- Slow CPU

batch-size: triangles/batch

batches/s

GPU 1
GPU 2
GPU 3
Effects of Number of Tris/ Batch

batch-size: triangles/batch

batches/s

fast CPU

slow CPU

Straight horizontal lines: batches/s independent of number of triangles per batch

- GPU 1
- GPU 2
- GPU 3

Make Better Games.
Effects of Different GPUs

Different GPUs perform similarly; slight variations due to different driver paths.
Measured Batches Per Second

- ~170k batches/s
- ~60k batches/s
- Athlon XP 2.7+
- 1GHz Pentium 3

Graph showing performance comparison between Athlon XP 2.7+ and 1GHz Pentium 3 with different graphics cards.
Side Note: OpenGL Performance

The graph illustrates the performance comparison between OpenGL and Direct3D for a 1GHz Pentium 3 and NVIDIA GeForce4 Ti 4600. The chart shows the number of batches per second (thousands) against the number of triangles per batch. OpenGL consistently outperforms Direct3D, with a speed advantage of approximately 1.7 to 2.3 times. This indicates that for the given hardware setup, OpenGL can render more batches per second for a given number of triangles per batch, making it a superior choice in this context.
CPU Limited?

• Yes, at < 130 tris/ batch (avg) you are
 - completely,
 - utterly,
 - totally,
 - 100%

 - CPU limited!

• CPU is busy doing nothing, but submitting batches!
How ‘Real’ Is Test App?

• Test app only does SetState, Draw, repeat;
 - Stays in CPU cache
 - No frustum culling, no nothing
 - So pretty much best case

• Test app changes arbitrary set of states
 - Types of state changes?
 - And how many states change?
 - Maybe real apps do fewer/better state changes?
Real World Performance

- 353 batches/frame @ 16% 1.4GHz CPU: 26fps
- 326 batches/frame @ 18% 1.4GHz CPU: 25fps
- 467 batches/frame @ 20% 1.4GHz CPU: 25fps
- 450 batches/frame @ 21% 1.4GHz CPU: 25fps
- 700 batches/frame @ 100% (!) 1.5GHz CPU: 50fps
- 1000 batches/frame @ 100% (!) 1.5GHz CPU: 40fps
- 414 batches/frame @ 20% (?) 2.2GHz CPU: 27fps
- 263 batches/frame @ 20% (?) 3.0GHz CPU: 18fps
- 718 batches/frame @ 20% (?) 3.0GHz CPU: 21fps
Normalized Real World Performance

- ~41k batches/s @ 100% of 1GHz CPU
- ~32k batches/s @ 100% of 1GHz CPU
- ~42k batches/s @ 100% of 1GHz CPU
- ~38k batches/s @ 100% of 1GHz CPU
- ~25k batches/s @ 100% of 1GHz CPU
- ~25k batches/s @ 100% of 1GHz CPU
- ~25k batches/s @ 100% of 1GHz CPU
- ~8k batches/s @ 100% of 1GHz CPU
- ~25k batches/s @ 100% of 1GHz CPU

10k – 40k batches/s (100% 1GHz CPU)
Small Batches Feasible In Future?

• VTune (1GHz Pentium 3 w/ 2 tri/ batch):
 - 78% driver; 14% D3D; 6% Other32; rest noise

• Driver doing little per Draw/ SetState, but
 - Little times very large multiplier is still large

• Nvidia is optimizing drivers, but...

• Submitting X batches: O(X) work for CPU
 - CPU (game, runtime, driver) processes batch
 - Can reduce constants but not order O()
GPUs Getting Faster More Quickly Than CPUs

Avg. 18month CPU Speedup: 2.2
Avg. 18month GPU Speedup: 3.0-3.7
GPUs Continue To Outpace CPUs

• CPU processes batches, thus
 - Number of batches/frame MUST scale with:
 • Driver/Runtime optimizations
 • CPU speed increases

• GPU processes triangles (per batch), thus
 - Number of triangles/batch scales with:
 • GPU speed increases

• GPUs getting faster more quickly than CPUs
 - Batch sizes CAN increase
So, How Many Tris Per Batch?

• 500? 1000? It does not matter!
 - Impossible to fit everything into large batches
 - A few 2 tris/batch do NOT kill performance!
 - N tris/batch: N increases every 6 months

• I am a donut! Ask not how many tris/batch, but rather how many batches/frame!

• You get X batches per frame, depending on:
 - Target CPU spec
 - Desired frame-rate
 - How much % CPU available for submitting batches
You get X batches per frame,

X mainly depends on CPU spec
What is X?

• 25k batches/s @ 100% 1 GHz CPU
 - Target: 30fps; 2GHz CPU; 20% (0.2) Draw/SetState:
 - X = 333 batches/frame

• Formula: 25k * GHz * Percentage/ Framerate
 - GHz = target spec CPU frequency
 - Percentage = value 0..1 corresponding to CPU percentage available for Draw/ SetState calls
 - Framerate = target frame rate in fps
Please Hang Over Your Bed

25k batches/s @ 100%
1GHz CPU
How Many Triangles Per Batch?

• Up to you!
 - Anything between 1 to 10,000+ tris possible

• If small number, either
 - Triangles are large or extremely expensive
 - Only GPU vertex engines are idle

• Or
 - Game is CPU bound, but don’t care because you budgeted your CPU ahead of time, right?
 - GPU idle (available for upping visual quality)
GPU Idle? Add Triangles For Free!

Game Developers Conference

Make Better Games.
GPU Idle?
Complicate Pixel Shaders For Free!
300 Batches Per Frame Sucks

• (Ab)use GPU to pack multiple batches together

• Critical NOW!
 - For increasing number of objects in game world

• Will only become more critical in the future
Batch Breaker: Texture Change

- Use all of Geforce FX’s 16 textures
 - Fit 8 distinct dual-textured batches into 1 single batch

- Pack multiple textures into 1 surface
 - Works as long as no wrap/ repeat
 - Requires tool support
 - Potentially wastes texture space
 - Potential problems w/ multi-sampling
Batch Breaker: Transform Change

• **Pre-transform static geometry**
 - Once in a while
 - Video memory overhead: model replication

• **1-Bone matrix palette skinning**
 - Encode world matrix as 2 float4s
 • axis/ angle
 • translate/ uniform scale
 - Video memory overhead: model replication

• **Data-dependent vertex branching**
 - Render variable # of bones/ lights in one batch
Batch Breaker: Material Change

- Compute multiple materials in pixel-shaders
 - Choose/Interpolate based on
 - Per-vertex attribute
 - Texture-map

- More performance optimization tips and tricks:

 Friday 3:00pm

 “Graphics Pipeline Performance”
 C. Cebenoyan and M. Wloka
But Only High-End GPUs Have That Feature!?

• Yes, but high-end GPUs most likely CPU-bound

• High-End GPUs most suited to deal with:
 - Longer vertex-shaders
 - Longer pixel-shaders
 - More texture accesses
 - Bigger video memory requirements

• To improve batching
But These Things Slow GPU Down!?

- Remember: CPU-limited
 - GPU is mostly idle

- Making GPU work, so CPU does NOT

- Overall effect: faster game
25k batches/s @ 100%
1GHz CPU
Acknowledgements

• Many thanks to

Gary McTaggart, Valve
Jay Patel, Blizzard
Tom Gambill, NCSoft
Scott Brown, NetDevil
Guillermo Garcia-Sampedro, PopTop
Questions, Comments, Feedback?

- Matthias Wloka: mwloka@nvidia.com
Can You Afford to Loose These Speed-Ups?

• 2 tris/ batch
 - Max. of ~0.1 MTriangles/ s for 1GHz Pentium 3
 • Factor 1500x away from max. throughput
 - Max. of ~0.4 MTriangles/ s for Athlon XP 2.7+
 • Factor 375x away from max. throughput