Performance Optimization Supercomputing 2011

Paulius Micikevicius| NVIDIA November 14, 2011

© NVIDIA 2011



Requirements for Maximum Performance

© NVIDIA 2011



Requirements for Maximum Performance

» Have sufficient parallelism
— At least a few 1,000 threads per function

» Coalesced memory access
— By threads in the same “thread-vector”

* Coherent execution
— By threads in the same “thread-vector”

© NVIDIA 2011



Amount of Parallelism

GPUs issue instructions in order
— Issue stalls when instruction arguments are not ready
GPUs switch between threads to hide latency

— Context switch is free: thread state is partitioned (large register file), not
stored/restored

Conclusion: need enough threads to hide math latency and to
saturate the memory bus

— Independent instructions (ILP) within a thread also help
Very rough rule of thumb:

— Need ~512 threads per SM

— So, at least a few 1,000 threads per GPU
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Control Flow

 Single-Instruction Multiple-Threads (SIMT) model
— Asingle instruction is issued for a warp (thread-vector) at a time
— NVIDIA GPU: warp = a vector of 32 threads

 Compare to SIMD:
— SIMD requires vector code in each thread

— SIMT allows you to write scalar code per thread
» Vectorization is guaranteed by hardware

 Note:

— All contemporary processors (CPUs and GPUs) are built by
aggregating vector processing unit
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Control Flow
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instructions / time

Execution within warps is coherent
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Memory Access

» Addresses from a warp (“thread-vector”) are
converted into line requests

— line sizes: 32B and 128B
— Goal is to maximally utilize the bytes in these lines

addresses from a warp are within cache line

VLib

0 32 64 96 128 160 192 224 256 288 320 352 384
Memory addresses
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addresses from a warp are within cache line
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Performance Optimization
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Performance Optimization Process

« Use appropriate performance metric for each kernel

— For example, Gflops/s don’t make sense for a bandwidth-bound kernel
* Determine what limits kernel performance

— Memory throughput

— Instruction throughput

— Latency

— Combination of the above
« Address the limiters in the order of importance

— Determine how close to the HW limits the resource is being used

— Analyze for possible inefficiencies

— Apply optimizations

» Often these will just fall out from how HW operates
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3 Ways to Assess Performance Limiters

 Algorithmic
— Based on algorithm’s memory and arithmetic requirements

— Least accurate: undercounts instructions and potentially memory
accesses

 Profiler
— Based on profiler-collected memory and instruction counters

— More accurate, but doesn’t account well for overlapped memory and
arithmetic

 Code modification

— Based on source modified to measure memory-only and arithmetic-only
times

— Most accurate, however cannot be applied to all codes
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Things to Know About Your GPU

* Theoretical memory throughput

— For example, Tesla M2090 theory is 177 GB/s
* Theoretical instruction throughput

— Varies by instruction type

» refer to the CUDA Programming Guide (Section 5.4.1) for details

— Tesla M2090 theory is 665 Ginstr/s for fp32 instructions
» Half that for fp64
* |I’m counting instructions per thread

* Rough “balanced” instruction:byte ratio

— For example, 3.76:1 from above (fp32 instr : bytes)
» Higher than this will usually mean instruction-bound code
» Lower than this will usually mean memory-bound code
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Another Way to Use the Profiler

 VisualProfiler reports instruction and memory throughputs
— IPC (instructions per clock) for instructions
— GB/s achieved for memory (and L2)
« Compare those with the theory for the HW
— Profiler will also report the theoretical best
Though for IPC it assumes fp32 instructions, it DOES NOT take instruction mix into consideration
— If one of the metrics is close to the hw peak, you’re likely limited by it
— If neither metric is close to the peak, then unhidden latency is likely an issue
“close” is approximate, I’d say 70% of theory or better
« Example: vector add
— IPC: 0.55 out of 2.0
— Memory throughput: 130 GB/s out of 177 GB/s
— Conclusion: memory bound
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Notes on the Profiler

Most counters are reported per Streaming Multiprocessor (SM)
— Not entire GPU
— Exceptions: L2 and DRAM counters

A single run can collect a few counters

— Multiple runs are needed when profiling more counters
» Done automatically by the Visual Profiler
* Have to be done manually using command-line profiler

Counter values may not be exactly the same for repeated runs
— Threadblocks and warps are scheduled at run-time
— S0, “two counters being equal” usually means “two counters within a small delta”

Refer to the profiler documentation for more information
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Global Memory Optimization
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Fermi Memory Hierarchy Review

SM-0 SM-1 SM-N
Registers Registers Registers
L1 SMEM L1 SMEM L1 SMEM
A A
L2

!

Global Memory
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Fermi Memory Hierarchy Review

* Local storage
— Each thread has own local storage
— Mostly registers (managed by the compiler)
« Shared memory / L1
— Program configurable: 16KB shared / 48 KB L1 OR 48KB shared / 16KB L1
— Shared memory is accessible by the threads in the same threadblock
— Low latency
— Very high throughput (1.33 TB/s aggregate on Tesla M2090)
« L2
— All accesses to global memory go through L2, including copies to/from CPU host
— 768 KB on Tesla M2090
* Global memory
— Accessible by all threads as well as host (CPU)
— Higher latency (400-800 cycles)
— Throughput: 177 GB/s on Tesla M2090
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Programming for L1 and L2

 Short answer: DON’T
 GPU caches are not intended for the same use as CPU caches
— Smaller size (especially per thread), so not aimed at temporal reuse

— Intended to smooth out some access patterns, help with spilled
registers, etc.

* Don’t try to block for L1/L2 like you would on CPU

— Youhhave 100s to 1,000s of run-time scheduled threads hitting the
caches

— If it is possible to block for L1 then block for SMEM

» Same size, same bandwidth, hw will not evict behind your back
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Fermi Global Memory Operations

 Memory operations are executed per warp
— 32 threads in a warp provide memory addresses
— Hardware determines into which lines those addresses fall

« Two types of loads:
— Caching (default mode)
» Attempts to hit in L1, then L2, then GMEM
» Load granularity is 128-byte line
— Non-caching
« Compile with -Xptxas -dlcm=cg option to nvcc
» Attempts to hit in L2, then GMEM
— Does not hit in L1, invalidates the line if it’s in L1 already

* Load granularity is 32-bytes

 Stores:
— Invalidate L1, go at least to L2, 32-byte granularity



Caching Load

« Scenario:

— Warp requests 32 aligned, consecutive 4-byte words
» Addresses fall within 1 cache-line

— Warp needs 128 bytes

— 128 bytes move across the bus on a miss

— Bus utilization: 100%

addresses from a warp

RRI L

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Non-caching Load

« Scenario:

— Warp requests 32 aligned, consecutive 4-byte words
» Addresses fall within 4 segments

— Warp needs 128 bytes

— 128 bytes move across the bus on a miss

— Bus utilization: 100%

addresses from a warp

RRI L

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Caching Load

« Scenario:

— Warp requests 32 aligned, permuted 4-byte words
» Addresses fall within 1 cache-line

— Warp needs 128 bytes

— 128 bytes move across the bus on a miss

— Bus utilization: 100%

addresses from a warp
I

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Non-caching Load

« Scenario:

— Warp requests 32 aligned, permuted 4-byte words
» Addresses fall within 4 segments

— Warp needs 128 bytes

— 128 bytes move across the bus on a miss

— Bus utilization: 100%

addresses from a warp
[ T T T 1

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Caching Load

« Scenario:

— Warp requests 32 misaligned, consecutive 4-byte words
» Addresses fall within 2 cache-lines

— Warp needs 128 bytes

— 256 bytes move across the bus on misses

— Bus utilization: 50%

addresses from a warp

[

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Non-caching Load

« Scenario:

— Warp requests 32 misaligned, consecutive 4-byte words
» Addresses fall within at most 5 segments

— Warp needs 128 bytes

— At most 160 bytes move across the bus

— Bus utilization: at least 80%

» Some misaligned patterns will fall within 4 segments, so 100% utilization

addresses from a warp

[T T T T ]

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Caching Load

« Scenario:

— All threads in a warp request the same 4-byte word
» Addresses fall within a single cache-line

— Warp needs 4 bytes

— 128 bytes move across the bus on a miss

— Bus utilization: 3.125%

addresses from a warp

N ———

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Non-caching Load

e Scenario:

— All threads in a warp request the same 4-byte word
» Addresses fall within a single segment

— Warp needs 4 bytes

— 32 bytes move across the bus on a miss

— Bus utilization: 12.5%

addresses from a warp

N ———

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Caching Load

« Scenario:
— Warp requests 32 scattered 4-byte words
» Addresses fall within N cache-lines
— Warp needs 128 bytes
— N*128 bytes move across the bus on a miss
— Bus utilization: 128 / (N*128)

addresses from a warp
— r 1 0 0 ]

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Non-caching Load

« Scenario:
— Warp requests 32 scattered 4-byte words
« Addresses fall within N segments
— Warp needs 128 bytes
— N*32 bytes move across the bus on a miss
— Bus utilization: 128 / (N*32) (4x higher than caching loads)

addresses from a warp
L 1 L
[ [ T 1 [ T 1 /T 1]

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Load Caching and L1 Size

* Non-caching loads can improve performance when:
— Loading scattered words or only a part of a warp issues a load
» Benefit: memory transaction is smaller, so useful payload is a larger percentage
« Loading halos, for example
— Spilling registers (reduce line fighting with spillage)
» Large L1 can improve perf when:
— Spilling registers (more lines in the cache -> fewer evictions)
— Some misaligned, strided access patterns
— 16-KB L1 / 48-KB smem OR 48-KB L1 / 16-KB smem
* CUDA call, can be set for the app or per-kernel
* How to use:

— Just try a 2x2 experiment matrix: {caching, non-caching} x {48-L1, 16-L1}
» Keep the best combination - same as you would with any HW managed cache, including CPUs
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Memory Throughput Analysis

* Throughput:
— From app point of view: count bytes requested by the application
— From HW point of view: count bytes moved by the hardware

— The two can be different
» Scattered/misalighed pattern: not all transaction bytes are utilized
» Broadcast: the same small transaction serves many requests

« Two aspects to analyze for performance impact:
— Address pattern
— Number of concurrent accesses in flight
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Memory Throughput Analysis

« Determining that access pattern is problematic:

— Use the profiler to check load and store efficiency
« Efficiency = bytes requested by the app / bytes transferred

» Will slow down code substantially:
— Bytes-requested is measured by adding code for every load/store
— So, you may want to run for smaller data set

« |If efficiency isn’t 100%, then bandwidth is being wasted
— Below 50% certainly means scattered accesses
— Above 50% could be scattered or misaligned

— Derive app-requested bytes yourself
« Still use profiler to get HW throughput (fast, no sw modification)

* Determining that the number of concurrent accesses is insufficient:
— Throughput from HW point of view is much lower than theoretical

34



© NVIDIA 2011

emory Throughput Analysis

MVIDIA Visual Profiler
File Wiew Run Help

WEE BwS aQ@ BE

. © *New Session 52

= O || W8 Properties 52 | W@ Detai Graphs =0
0.3: ms 80.3|5 ms 80.1 s an 4’|5 s 80.5I ms SU.SIS ms SU.E: ms SU.BIS ms 30.?' ms an .?IS ms SD.SI ms 0.7% [1] add({...)
E Process: 722 Name Yalue
[=] Thread: 3032 = Duration
Runtirne APT Session 93,233 ms
Driver API Timeline 81141 ms
Kernel 666,598 ps
0] Tesla M2090
o Tesls Utiization 0.7%
[=] contest 1 foUDa) Invocations 1
F MemCpy (DroH)
IE‘ Compute
Skrearns
< >
W& Analysis ﬂ Details | B Console | B Settings 23 =08
Session New Session
Devices Metrics Events
Executable
- |Tesla 1Mz090 R | [=)-[E] Memary ~ -~
Metrics/Events [] Requested Global Load Throughput [ sm cta launched
[[] Requested Global Stare Throughput [ branch
[] DR&M Read Throughput [] divergent branch
[] DR&M Write Throughput [ active cycles
[ Global Stare Throughput [ instructions issued -
= [Jinstructions executed
; Global Memary Load Efficiency [] warps launched
Global Memory Skare EFficiency [ threads launched
i [Jthread inst executed_0
[] Branch EFfficiency [Jthread inst executed_1
Owrc [ active warps
[ Instruction Replay Overhead = =[] Memary
[] shared Memary Replay Overhead [ uncached global load transaction
[ Global Memary Cache Replay Overhead [ global stare transaction
[] Warp Execution EFficiency [ shared bank conflict
[ Local Memary Cache Replay Qverhead [] fb subpi read sectars
(=[] Mulkiprocessor [ fb subpi read sectars
[ Multiprocessor Efficiency b [7] b subp0 write seckars b

35



© NVIDIA 2011

Memory Throughput Analysis

NVIDIA Visual Profiler,
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Optimization: Address Pattern

* Coalesce the address pattern
— Minimize the lines that a warp addresses in a given access
» 128-byte lines for caching loads, 32-byte segments for non-caching loads, stores

— Use structure-of-arrays storage (as opposed to array of structures)
» You have to do this for any architecture, including CPUs

— Pad multi-dimensional structures so that accesses by warps are aligned on line
boundaries

« Try using non-caching loads
— Smaller transactions (32B instead of 128B)
» more efficient for scattered or partially-filled patterns
* Try fetching data from texture
— Smaller transactions and different caching
— Cache not polluted by other gmem loads

37
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Optimization: Access Concurrency

» Have enough concurrent accesses to saturate the bus
— Need (mem_latency)x(bandwidth) bytes in flight (Little’s law)

* Ways to increase concurrent accesses:

— Increase occupancy (run more threads concurrently)

» Adjust threadblock dimensions
— To maximize occupancy at given register and smem requirements

» Reduce register count (-maxrregcount option, or __launch_bounds_ )
— Modify code to process several elements per thread

38
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Some Experimental Data

* Increment a 64M element array
— Two accesses per thread (load then store, but they are dependent)

» Thus, each warp (32 threads) has one outstanding transaction at a time

« Tesla M2090, ECC off, theoretical bandwidth: 177 GB/s

160

140 — — .
/ / Several independent smaller
120 accesses have the same effect
/ / as one larger one.
100
GB/s 80 / ——32-bitaccess | For examPle: .
/ / Four 32-bit ~= one 128-bit

60 / / ——64-bitaccess [
40 // 128-bitaccess [
20 d

O T T T T T T T T T T T 1
0 128 256 384 512 640 768 896 1024 1152 1280 1408 1536

Threads per Multiprocessor
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Summary: GMEM Optimization

 Strive for perfect coalescing per warp
— Align starting address (may require padding)
— A warp should access within a contiguous region
— Structure of Arrays is better than Array of Structures

« Have enough concurrent accesses to saturate the bus

— Launch enough threads to maximize throughput
« Latency is hidden by switching threads (warps)

— If needed, process several elements per thread
* More concurrent loads/stores

« Try L1 and caching configurations to see which one works best

— Caching vs non-caching loads (compiler option)
— 16KB vs 48KB L1 (CUDA call)
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Shared Memory Optimization
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Shared Memory

» Uses:
— Inter-thread communication within a block
— Cache data to reduce redundant global memory accesses
— Use it to improve global memory access patterns
« Fermi organization:
— 32 banks, 4-byte wide banks
— Successive 4-byte words belong to different banks
* Performance:
— 4 bytes per bank per 2 clocks per multiprocessor: 1.3 TB/s on M2090
— smem accesses are issued per 32 threads (warp)

— serialization: if n threads in a warp access different 4-byte words in the same
bank, n accesses are executed serially

— multicast: n threads access the same word in one fetch
* Could be different bytes within the same word
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Bank Addressing Examples

 No Bank Conflicts

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

 No Bank Conflicts

Thread O
Thread 1

Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

Thread 31
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Bank Addressing Examples

« 2-way Bank Conflicts

Thread O
Thread 1
Thread 2
Thread 3
Thread 4

Thread 28
Thread 29
Thread 30
Thread 31

« 8-way Bank Conflicts

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6

Thread 7

Thread 31




Profiling SMEM Bank Conflicts

* Find out whether:
— Bank conflicts are occuring
— Bank conflicts significantly impact performance
* No need to optimize if they don’t
* Impact on performance is significant if:
— Kernel is limited by instruction throughput
— Shared memory bank conflicts are a significant percentage of instructions issued

» Use the profiler to get:

— Bank conflict count, instructions-issued count
» Currently bank-conflicts get overcounted for accesses greater than 32-bit words:
— Divide by 2 for 64-bit accesses (double, float2, etc.)
— Divide by 4 for 128-bit accesses (float4, etc.)
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Shared Memory: Avoiding Bank Conflicts

« 32x32 SMEM array

* Warp accesses a column:
— 32-way bank conflicts (threads in a warp access the same bank)

2 31
0 S
Bank O -
Bank 1 1 .
Bank 31 2

31
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Shared Memory: Avoiding Bank Conflicts

» Add a column for padding:
— 32x33 SMEM array
* Warp accesses a column:
— 32 different banks, no bank conflicts

~

o1 1 2 31  padding

Bank O
Bank 1 1

5 I

Bank 31 |
|

|
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Case Study: SMEM Bank Conflicts

* One of CAM-HOMME kernels (climate simulation), fp64

 Profiler values:
— Instructions:Byte ratio, reported by profiler: 4
« Suggests kernel is instruction limited (even before adjusting for fp64 throughput)

— Instruction counts
 Executed / issued: 2,406,426 / 2,756,140
» Difference: 349,714 (12.7% of instructions issued were “replays”)

— SMEM instructions:
 Load + store: 421,785 + 95,172 = 516,957
« Bank conflicts: 674,856 (really 337,428 because of double-counting for fp64)
» S0, SMEM bank conflicts make up 12.2% of all instructions (337,428 / 2,756,140)

 Solution: pad shared memory
— Performance increased by ~15%
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Texture and Constant Data
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Constant and Texture Data

« Constants:
— _ constant__ qualifier in declarations
— Up to 64KB
— Ideal when the same address is read by all threads in a warp (FD coefficients, etc.)
* Throughput is 4B per SM per clock
« Textures:

— Dedicated hardware for:
* Qut-of-bounds index handling (clamp or wrap-around)
« Optional interpolation (think: using fp indices for arrays)
— Linear, bilinear, trilinear
+ Optional format conversion
— {char, short, int} -> float
« Operation:
— Both textures and constants reside in global memory
— Both are read via dedicated caches
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Instruction Throughput and Optimization
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Kernel Execution

» Threadblocks are assigned to SMs
— Done at run-time, so don’t assume any particular order
— Once a threadblock is assigned to an SM, it stays resident until all its threads complete

* It’s not migrated to another SM
* It’s not swapped out for another threadblock

* Instructions are issued/executed per warp

— Warp = 32 consecutive threads
« Think of it as a “vector” of 32 threads
* The same instruction is issued to the entire warp

» Scheduling
— Warps are scheduled at run-time
— Hardware picks from warps that have an instruction ready to execute
» Ready = all arguments are ready
— Instruction latency is hidden by executing other warps
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Control Flow

» Divergent branches:
— Threads within a single warp take different paths

e if-else,...
— Different execution paths within a warp are serialized
 Different warps can execute different code with no impact on
performance
* Avoid diverging within a warp
— Example with divergence:
 if (threadIdx.x > 2) {...} else {...}
» Branch granularity < warp size
— Example without divergence:
* if (threadIdx.x / WARP SIZE > 2) {...} else {...}

» Branch granularity is a whole multiple of warp size
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Possible Performance Limiting Factors

« Raw instruction throughput
— Know the kernel instruction mix
— fp32, fp64, int, mem, transcendentals, etc. have different throughputs

» Refer to the CUDA Programming Guide / Best Practices Guide
» Can examine assembly: use cuobjdump tool provided with CUDA toolkit

— Alot of divergence can “waste” instructions

e |Instruction serialization

— Occurs when threads in a warp issue the same instruction in sequence
» As opposed to the entire warp issuing the instruction at once
» Think of it as “replaying” the same instruction for different threads in a warp
— Some causes:
» Shared memory bank conflicts
» Constant memory bank conflicts
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Instruction Throughput: Analysis

« Compare achieved instruction throughput to HW capabilities
— Profiler reports achieved throughput as IPC (instructions per clock)
» As percentage of theoretical peak for pre-Fermi GPUs
— Peak instruction throughput is documented in the Programming Guide

» Profiler also provides peak fp32 throughput for reference (doesn’t take your instruction mix into
consideration)

* Check for serialization

— Number of replays due to serialization = difference between instructions_issued and
instructions_executed counters

— Profiler reports % of serialization metric, additional counters for smem bank conflicts
— A concern only if code is instruction-bound and serialization percentage is high

« Warp divergence
— Profiler counters: divergent_branch, branch
— Compare the two to see what percentage diverges

» However, this only counts the branches, not the rest of serialized instructions

© NVIDIA 2011
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Instruction Throughput: Optimization

 Use intrinsics where possible ( __sin(), __sincos(), __exp(), etc.)
— Available for a number of math.h functions

— 2-3 bits lower precision, much higher throughput
» Refer to the CUDA Programming Guide for details

— Often a single HW instruction, whereas a non-intrinsic is a SW sequence
« Additional compiler flags that also help (select GT200-level precision):

— -ftz=true : flush denormals to 0
— -prec-div=false : faster fp division instruction sequence (some precision Loss)
— -prec-sqrt=false : faster fp sqrt instruction sequence (some precision loss)

* Make sure you do fp64 arithmetic only where you mean it:

— fp64 throughput is lower than fp32
— fp literals without an “f” suffix ( 34.7 ) are interpreted as fpé4 per C standard
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Serialization: Optimization

* Shared memory bank conflicts:
— Covered earlier in this presentation

* Constant memory bank conflicts:
— Ensure that all threads in a warp access the same __constant__ value

— If many different values will be needed per warp:
« Use gmem or smem instead

« Warp serialization:

— Try grouping threads that take the same path
» Rearrange the data, pre-process the data
« Rearrange how threads index data (may affect memory perf)

© NVIDIA 2011
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Instruction Throughput: Summary

* Analyze:
— Check achieved instruction throughput
— Compare to HW peak (but keep instruction mix in mind)
— Check percentage of instructions due to serialization

* Optimizations:
— Intrinsics, compiler options for expensive operations

— Group threads that are likely to follow same execution path
(minimize warp divergence)

— Avoid SMEM bank conflicts (pad, rearrange data)
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Latency Hiding
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Latency: Analysis

« Suspect unhidden latency if:
— Neither memory nor instruction throughput is close to HW theoretical rates

— Poor overlap between mem and math

* Full-kernel time is significantly larger than max{mem-only, math-only}
— Refer to SC10 or GTC10 Analysis-Driven Optimization slides for details

« Two possible causes:

— Insufficient concurrent threads per multiprocessor to hide latency
» Occupancy too low

» Too few threads in kernel launch to load the GPU
— elapsed time doesn’t change if problem size is increased (and with it the number of blocks/threads)

— Too few concurrent threadblocks per SM when using  syncthreads()
« _ syncthreads() can prevent overlap between math and mem within the same threadblock
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Simplified View of Latency and Syncs

Kernel where most math cannot be
executed until all data is loaded by

I Memory-only time the threadblock

] Math-only time

I N Full-kernel time, one large threadblock per SM

time > 61
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Simplified View of Latency and Syncs

Kernel where most math cannot be

executed until all data is loaded by
I Memory-only time the threadblock

] Math-only time

I N Full-kernel time, one large threadblock per SM

__ Full-kernel time, two threadblocks per SM
__ (each half the size of one large one)

time > 62
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Latency: Optimization

* |Insufficient threads or workload:
— Increase the level of parallelism (more threads)

— If occupancy is already high but latency is not being hidden:

» Process several output elements per thread - gives more independent memory and arithmetic
instructions (which get pipelined)

e Barriers:

— Can assess impact on perf by commenting out __syncthreads()
* Incorrect result, but gives upper bound on improvement

— Try running several smaller threadblocks
« Think of it as “pipeled” threadblock execution
* In some cases that costs extra bandwidth due to halos

* Check out Vasily Volkov’s talk 2238 at GTC 2010 for a detailed treatment:
— “Better Performance at Lower Latency”
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Summary

» Keep the 3 requirements for max performance in mind:
— Sufficient parallelism
— Coalesced memory access
— Coherent (vector) execution within warps
* Determine what limits kernel performance
— Memory, arithmetic, latency
* Optimize in the order of limiter severity

— Use the profiler to determine performance impact first
* Some code modifications help here too
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Additional Resources

* Fundamenal Optimizations / Analysis-Driven Optimization
— More detailed treatment of this information, more cases studies
— SC10: http://www.nvidia.com/object/sc10_cuda_tutorial.html

— GTC10 (includes video recordings):
» http://www.gputechconf.com/page/gtc-on-demand.html#2011

* http://www.gputechconf.com/page/gtc-on-demand.html(#2012
* CUDA Best Practices Guide / CUDA Programming Guide
— Included in the docs of any CUDA toolkit
— All optimization materials apply to OpenCL and other programming models
 CUDA Webinars:
— http://developer.nvidia.com/gpu-computing-webinars

— Shorter, more focused presentations (recorded video of past talks)
* Memory optimization, local memory and register spilling, etc.
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Questions?
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