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Requirements for Maximum Performance 
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Requirements for Maximum Performance 

• Have sufficient parallelism 

– At least a few 1,000 threads per function 

• Coalesced memory access 

– By threads in the same “thread-vector” 

• Coherent execution 

– By threads in the same “thread-vector” 
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Amount of Parallelism 

• GPUs issue instructions in order 

– Issue stalls when instruction arguments are not ready 

• GPUs switch between threads to hide latency 

– Context switch is free: thread state is partitioned (large register file), not 
stored/restored 

• Conclusion: need enough threads to hide math latency and to 
saturate the memory bus 

– Independent instructions (ILP) within a thread also help 

• Very rough rule of thumb: 

– Need ~512 threads per SM 

– So, at least a few 1,000 threads per GPU 
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Control Flow 

• Single-Instruction Multiple-Threads (SIMT) model 

– A single instruction is issued for a warp (thread-vector) at a time 

– NVIDIA GPU: warp = a vector of 32 threads 

• Compare to SIMD: 

– SIMD requires vector code in each thread 

– SIMT allows you to write scalar code per thread  

• Vectorization is guaranteed by hardware 

• Note: 

– All contemporary processors (CPUs and GPUs) are built by 
aggregating vector processing unit 
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Control Flow 

if ( ... ) 

{ 

     // then-clause 

} 

else 

{ 

    // else-clause 

} 
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Execution within warps is coherent 
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(“vector” of threads) 
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Execution diverges within a warp 
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Memory Access 

• Addresses from a warp (“thread-vector”) are 
converted into line requests 
– line sizes: 32B and 128B 

– Goal is to maximally utilize the bytes in these lines 
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96 192 128 160 224 288 256 32 64 352 320 384 
Memory addresses 

0 

addresses from a warp are within cache line 
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... 

96 192 128 160 224 288 256 32 64 352 320 384 
Memory addresses 

addresses from a warp are within cache line 

0 

... 
scattered addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 416 
Memory addresses 

0 
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Performance Optimization 
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Performance Optimization Process 

• Use appropriate performance metric for each kernel 

– For example, Gflops/s don’t make sense for a bandwidth-bound kernel 

• Determine what limits kernel performance 

– Memory throughput 

– Instruction throughput 

– Latency 

– Combination of the above 

• Address the limiters in the order of importance 

– Determine how close to the HW limits the resource is being used 

– Analyze for possible inefficiencies 

– Apply optimizations 

• Often these will just fall out from how HW operates 
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3 Ways to Assess Performance Limiters 

• Algorithmic 

– Based on algorithm’s memory and arithmetic requirements 

– Least accurate: undercounts instructions and potentially memory 
accesses 

• Profiler 

– Based on profiler-collected memory and instruction counters 

– More accurate, but doesn’t account well for overlapped memory and 
arithmetic 

• Code modification 

– Based on source modified to measure memory-only and arithmetic-only 
times 

– Most accurate, however cannot be applied to all codes 
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Things to Know About Your GPU 

• Theoretical memory throughput 

– For example, Tesla M2090 theory is 177 GB/s 

• Theoretical instruction throughput 

– Varies by instruction type 

• refer to the CUDA Programming Guide (Section 5.4.1) for details 

– Tesla M2090 theory is 665 GInstr/s for fp32 instructions 

• Half that for fp64 

• I’m counting instructions per thread 

• Rough “balanced” instruction:byte ratio 

– For example, 3.76:1 from above (fp32 instr : bytes) 

• Higher than this will usually mean instruction-bound code 

• Lower than this will usually mean memory-bound code 
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Another Way to Use the Profiler 

• VisualProfiler reports instruction and memory throughputs 

– IPC (instructions per clock) for instructions 

– GB/s achieved for memory (and L2) 

• Compare those with the theory for the HW 

– Profiler will also report the theoretical best 

• Though for IPC it assumes fp32 instructions, it DOES NOT take instruction mix into consideration 

– If one of the metrics is close to the hw peak, you’re likely limited by it 

– If neither metric is close to the peak, then unhidden latency is likely an issue 

– “close” is approximate, I’d say 70% of theory or better 

• Example: vector add 

– IPC:  0.55 out of 2.0 

– Memory throughput:  130 GB/s out of 177 GB/s 

– Conclusion: memory bound 
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Notes on the Profiler 

• Most counters are reported per Streaming Multiprocessor (SM) 

– Not entire GPU 

– Exceptions: L2 and DRAM counters 

• A single run can collect a few counters 

– Multiple runs are needed when profiling more counters 

• Done automatically by the Visual Profiler 

• Have to be done manually using command-line profiler 

• Counter values may not be exactly the same for repeated runs 

– Threadblocks and warps are scheduled at run-time 

– So, “two counters being equal” usually means “two counters within a small delta” 

• Refer to the profiler documentation for more information 
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Global Memory Optimization 
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Fermi Memory Hierarchy Review 

L2 

Global Memory 
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Fermi Memory Hierarchy Review 

• Local storage 

– Each thread has own local storage 

– Mostly registers (managed by the compiler) 

• Shared memory / L1 

– Program configurable: 16KB shared / 48 KB L1   OR   48KB shared / 16KB L1 

– Shared memory is accessible by the threads in the same threadblock 

– Low latency 

– Very high throughput (1.33 TB/s aggregate on Tesla M2090) 

• L2 

– All accesses to global memory go through L2, including copies to/from CPU host 

– 768 KB on Tesla M2090 

• Global memory 

– Accessible by all threads as well as host (CPU) 

– Higher latency (400-800 cycles) 

– Throughput: 177 GB/s on Tesla M2090 
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Programming for L1 and L2 

• Short answer: DON’T 

• GPU caches are not intended for the same use as CPU caches 

– Smaller size (especially per thread), so not aimed at temporal reuse 

– Intended to smooth out some access patterns, help with spilled 
registers, etc. 

• Don’t try to block for L1/L2 like you would on CPU 

– You have 100s to 1,000s of run-time scheduled threads hitting the 
caches 

– If it is possible to block for L1 then block for SMEM 

• Same size, same bandwidth, hw will not evict behind your back 
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Fermi Global Memory Operations 

• Memory operations are executed per warp 

– 32 threads in a warp provide memory addresses 

– Hardware determines into which lines those addresses fall 
 

• Two types of loads: 

– Caching (default mode) 

• Attempts to hit in L1, then L2, then GMEM 

• Load granularity is 128-byte line 

– Non-caching 

• Compile with –Xptxas –dlcm=cg option to nvcc 

• Attempts to hit in L2, then GMEM 

– Does not hit in L1, invalidates the line if it’s in L1 already 

• Load granularity is 32-bytes 
 

• Stores: 

– Invalidate L1, go at least to L2, 32-byte granularity 
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Caching Load 

• Scenario: 

– Warp requests 32 aligned, consecutive 4-byte words 

• Addresses fall within 1 cache-line 

– Warp needs 128 bytes 

– 128 bytes move across the bus on a miss 

– Bus utilization: 100% 

 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Non-caching Load 

• Scenario: 

– Warp requests 32 aligned, consecutive 4-byte words 

• Addresses fall within 4 segments 

– Warp needs 128 bytes 

– 128 bytes move across the bus on a miss 

– Bus utilization: 100% 

 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 



© NVIDIA 2011 

Caching Load 

... 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

addresses from a warp 

0 

• Scenario: 

– Warp requests 32 aligned, permuted 4-byte words 

• Addresses fall within 1 cache-line 

– Warp needs 128 bytes 

– 128 bytes move across the bus on a miss 

– Bus utilization: 100% 
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Non-caching Load 

... 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

addresses from a warp 

0 

• Scenario: 

– Warp requests 32 aligned, permuted 4-byte words 

• Addresses fall within 4 segments 

– Warp needs 128 bytes 

– 128 bytes move across the bus on a miss 

– Bus utilization: 100% 
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Caching Load 

96 192 128 160 224 288 256 

... 
addresses from a warp 

32 64 0 352 320 384 448 416 
Memory addresses 

• Scenario: 

– Warp requests 32 misaligned, consecutive 4-byte words 

• Addresses fall within 2 cache-lines 

– Warp needs 128 bytes 

– 256 bytes move across the bus on misses 

– Bus utilization: 50% 
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Non-caching Load 

96 192 128 160 224 288 256 

... 
addresses from a warp 

32 64 0 352 320 384 448 416 
Memory addresses 

• Scenario: 

– Warp requests 32 misaligned, consecutive 4-byte words 

• Addresses fall within at most 5 segments 

– Warp needs 128 bytes 

– At most 160 bytes move across the bus 

– Bus utilization: at least 80% 
• Some misaligned patterns will fall within 4 segments, so 100% utilization 
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Caching Load 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 

• Scenario: 

– All threads in a warp request the same 4-byte word 

• Addresses fall within a single cache-line 

– Warp needs 4 bytes 

– 128 bytes move across the bus on a miss 

– Bus utilization: 3.125% 
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Non-caching Load 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 

• Scenario: 

– All threads in a warp request the same 4-byte word 

• Addresses fall within a single segment 

– Warp needs 4 bytes 

– 32 bytes move across the bus on a miss 

– Bus utilization: 12.5% 
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Caching Load 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 

• Scenario: 

– Warp requests 32 scattered 4-byte words 

• Addresses fall within N cache-lines 

– Warp needs 128 bytes 

– N*128 bytes move across the bus on a miss 

– Bus utilization:  128 / (N*128) 
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Non-caching Load 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 

• Scenario: 

– Warp requests 32 scattered 4-byte words 

• Addresses fall within N segments 

– Warp needs 128 bytes 

– N*32 bytes move across the bus on a miss 

– Bus utilization:  128 / (N*32)  (4x higher than caching loads) 

 



© NVIDIA 2011 

Load Caching and L1 Size 

• Non-caching loads can improve performance when: 

– Loading scattered words or only a part of a warp issues a load 

• Benefit: memory transaction is smaller, so useful payload is a larger percentage 

• Loading halos, for example 

– Spilling registers (reduce line fighting with spillage) 

• Large L1 can improve perf when: 

– Spilling registers (more lines in the cache -> fewer evictions) 

– Some misaligned, strided access patterns 

– 16-KB L1 / 48-KB smem   OR    48-KB L1 / 16-KB smem 

• CUDA call, can be set for the app or per-kernel 

• How to use: 

– Just try a 2x2 experiment matrix:  {caching, non-caching} x {48-L1, 16-L1} 

• Keep the best combination - same as you would with any HW managed cache, including CPUs 
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Memory Throughput Analysis 

• Throughput: 

– From app point of view: count bytes requested by the application 

– From HW point of view: count bytes moved by the hardware 

– The two can be different 

• Scattered/misaligned pattern: not all transaction bytes are utilized 

• Broadcast: the same small transaction serves many requests 
 

• Two aspects to analyze for performance impact: 

– Address pattern 

– Number of concurrent accesses in flight 

33 



© NVIDIA 2011 

• Determining that access pattern is problematic: 

– Use the profiler to check load and store efficiency 

• Efficiency = bytes requested by the app / bytes transferred 

• Will slow down code substantially:  

– Bytes-requested is measured by adding code for every load/store 

– So, you may want to run for smaller data set 

• If efficiency isn’t 100%, then bandwidth is being wasted 

– Below 50% certainly means scattered accesses 

– Above 50% could be scattered or misaligned 

– Derive app-requested bytes yourself 

• Still use profiler to get HW throughput (fast, no sw modification) 
 

• Determining that the number of concurrent accesses is insufficient: 

– Throughput from HW point of view is much lower than theoretical 

 34 

Memory Throughput Analysis 
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Memory Throughput Analysis 

• Determining that access pattern is problematic: 

– Use the profiler to check load and store efficiency 

• Efficiency = bytes requested by the app / bytes transferred 

• Will slow down code substantially:  

– Bytes-requested is measured by adding code for every load/store 

– So, you may want to run for smaller data set 

• If efficiency isn’t 100%, then bandwidth is being wasted 

– Below 50% certainly means scattered accesses 

– Above 50% could be scattered or misaligned 

– Compare app throughput to HW throughput 

• Use profiler to get HW throughput (fast, no sw modification) 

• Must be able to compute how many bytes application is requested 
 

• Determining that the number of concurrent accesses is insufficient: 

– Throughput from HW point of view is much lower than theoretical 

 35 
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• Determining that access pattern is problematic: 

– Use the profiler to check load and store efficiency 

• Efficiency = bytes requested by the app / bytes transferred 

• Will slow down code substantially:  

– Bytes-requested is measured by adding code for every load/store 

– So, you may want to run for smaller data set 

• If efficiency isn’t 100%, then bandwidth is being wasted 

– Below 50% certainly means scattered accesses 

– Above 50% could be scattered or misaligned 

– Compare app throughput to HW throughput 

• Use profiler to get HW throughput (fast, no sw modification) 

• Must be able to compute how many bytes application is requested 
 

• Determining that the number of concurrent accesses is insufficient: 

– Throughput from HW point of view is much lower than theoretical 

 36 
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Optimization: Address Pattern 

• Coalesce the address pattern 

– Minimize the lines that a warp addresses in a given access 

• 128-byte lines for caching loads, 32-byte segments for non-caching loads, stores 

– Use structure-of-arrays storage (as opposed to array of structures) 

• You have to do this for any architecture, including CPUs 

– Pad multi-dimensional structures so that accesses by warps are aligned on line 
boundaries 

• Try using non-caching loads 

– Smaller transactions (32B instead of 128B) 

• more efficient for scattered or partially-filled patterns 

• Try fetching data from texture 

– Smaller transactions and different caching 

– Cache not polluted by other gmem loads 
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Optimization: Access Concurrency 

• Have enough concurrent accesses to saturate the bus 

– Need (mem_latency)x(bandwidth) bytes in flight (Little’s law) 
 

• Ways to increase concurrent accesses: 

– Increase occupancy (run more threads concurrently) 

• Adjust threadblock dimensions 

– To maximize occupancy at given register and smem requirements 

• Reduce register count (-maxrregcount option, or __launch_bounds__) 

– Modify code to process several elements per thread 
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Some Experimental Data 

• Increment a 64M element array 

– Two accesses per thread (load then store, but they are dependent) 

• Thus, each warp (32 threads) has one outstanding transaction at a time 

• Tesla M2090, ECC off, theoretical bandwidth: 177 GB/s 

Several independent smaller 
accesses have the same effect 
as one larger one. 

For example: 

Four 32-bit  ~=  one 128-bit 
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Summary: GMEM Optimization 

• Strive for perfect coalescing per warp 

– Align starting address (may require padding) 

– A warp should access within a contiguous region 

– Structure of Arrays is better than Array of Structures 
 

• Have enough concurrent accesses to saturate the bus 

– Launch enough threads to maximize throughput 

• Latency is hidden by switching threads (warps) 

– If needed, process several elements per thread 

• More concurrent loads/stores 
 

• Try L1 and caching configurations to see which one works best 

– Caching vs non-caching loads (compiler option) 

– 16KB vs 48KB L1 (CUDA call) 
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Shared Memory Optimization 

41 



© NVIDIA 2011 

Shared Memory 
 

• Uses: 

– Inter-thread communication within a block 

– Cache data to reduce redundant global memory accesses 

– Use it to improve global memory access patterns 

• Fermi organization: 

– 32 banks, 4-byte wide banks 

– Successive 4-byte words belong to different banks 

• Performance: 

– 4 bytes per bank per 2 clocks per multiprocessor: 1.3 TB/s on M2090 

– smem accesses are issued per 32 threads (warp) 

– serialization: if n threads in a warp access different 4-byte words in the same 
bank, n accesses are executed serially 

– multicast: n threads access the same word in one fetch 

• Could be different bytes within the same word 
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Bank Addressing Examples 

• No Bank Conflicts • No Bank Conflicts 

Bank 31 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 31 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 31 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 31 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 
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Bank Addressing Examples 

• 2-way Bank Conflicts • 8-way Bank Conflicts 

Thread 31 
Thread 30 
Thread 29 
Thread 28 

Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 31 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 31 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 9 
Bank 8 

Bank 31 

Bank 7 

Bank 2 
Bank 1 
Bank 0 x8 

x8 
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Profiling SMEM Bank Conflicts 

• Find out whether: 

– Bank conflicts are occuring 

– Bank conflicts significantly impact performance 

• No need to optimize if they don’t 

• Impact on performance is significant if: 

– Kernel is limited by instruction throughput 

– Shared memory bank conflicts are a significant percentage of instructions issued 

•  Use the profiler to get: 

– Bank conflict count, instructions-issued count 

• Currently bank-conflicts get overcounted for accesses greater than 32-bit words: 

– Divide by 2 for 64-bit accesses (double, float2, etc.) 

– Divide by 4 for 128-bit accesses (float4, etc.) 
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Shared Memory: Avoiding Bank Conflicts 

• 32x32 SMEM array 

• Warp accesses a column: 

– 32-way bank conflicts (threads in a warp access the same bank) 
 

0         1         2              31 

Bank 0 

Bank 1 

  … 

Bank 31 

0 

       

1  

                      

2 
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Shared Memory: Avoiding Bank Conflicts 

• Add a column for padding: 

– 32x33 SMEM array 

• Warp accesses a column: 

– 32 different banks, no bank conflicts 
 

0         1         2              31       padding 

Bank 0 

Bank 1 

  … 

Bank 31 

0 

       

1  

                      

2 
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Case Study: SMEM Bank Conflicts 

• One of CAM-HOMME kernels (climate simulation), fp64 

• Profiler values: 

– Instructions:Byte ratio, reported by profiler: 4 

• Suggests kernel is instruction limited  (even before adjusting for fp64 throughput) 

– Instruction counts 

• Executed  / issued: 2,406,426  /   2,756,140 

• Difference:  349,714  (12.7% of instructions issued were “replays”) 

– SMEM instructions: 

• Load  + store: 421,785  +  95,172 = 516,957 

• Bank conflicts: 674,856    (really 337,428 because of double-counting for fp64) 

• So, SMEM bank conflicts make up 12.2% of all instructions (337,428 / 2,756,140) 

• Solution: pad shared memory 

– Performance increased by ~15%  

48 
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Texture and Constant Data 

49 
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Constant and Texture Data 

• Constants: 

– __constant__ qualifier in declarations 

– Up to 64KB 

– Ideal when the same address is read by all threads in a warp (FD coefficients, etc.) 

• Throughput is 4B per SM per clock 

• Textures: 

– Dedicated hardware for: 

• Out-of-bounds index handling (clamp or wrap-around) 

• Optional interpolation (think: using fp indices for arrays) 

– Linear, bilinear, trilinear 

• Optional format conversion 

– {char, short, int} -> float 

• Operation: 

– Both textures and constants reside in global memory 

– Both are read via dedicated caches 



© NVIDIA 2011 © NVIDIA 2011 

Instruction Throughput and Optimization 

51 
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Kernel Execution 

• Threadblocks are assigned to SMs 

– Done at run-time, so don’t assume any particular order 

– Once a threadblock is assigned to an SM, it stays resident until all its threads complete 

• It’s not migrated to another SM 

• It’s not swapped out for another threadblock 
 

• Instructions are issued/executed per warp 

– Warp = 32 consecutive threads 

• Think of it as a “vector” of 32 threads 

• The same instruction is issued to the entire warp 
 

• Scheduling 

– Warps are scheduled at run-time 

– Hardware picks from warps that have an instruction ready to execute 

• Ready = all arguments are ready 

– Instruction latency is hidden by executing other warps 
52 
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Control Flow 

• Divergent branches: 

– Threads within a single warp take different paths 
• if-else, ... 

– Different execution paths within a warp are serialized 

• Different warps can execute different code with no impact on 
performance 

• Avoid diverging within a warp 

– Example with divergence:  
• if (threadIdx.x > 2) {...} else {...} 

• Branch granularity < warp size 

– Example without divergence: 
• if (threadIdx.x / WARP_SIZE > 2) {...} else {...} 

• Branch granularity is a whole multiple of warp size 



© NVIDIA 2011 

Possible Performance Limiting Factors 

• Raw instruction throughput 

– Know the kernel instruction mix 

– fp32, fp64, int, mem, transcendentals, etc. have different throughputs 

• Refer to the CUDA Programming Guide / Best Practices Guide 

• Can examine assembly: use cuobjdump tool provided with CUDA toolkit 

– A lot of divergence can “waste” instructions 
 

• Instruction serialization 

– Occurs when threads in a warp issue the same instruction in sequence 

• As opposed to the entire warp issuing the instruction at once 

• Think of it as “replaying” the same instruction for different threads in a warp 

– Some causes: 

• Shared memory bank conflicts 

• Constant memory bank conflicts 

54 
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Instruction Throughput: Analysis 

• Compare achieved instruction throughput to HW capabilities 

– Profiler reports achieved throughput as IPC (instructions per clock) 

• As percentage of theoretical peak for pre-Fermi GPUs 

– Peak instruction throughput is documented in the Programming Guide 

• Profiler  also provides peak fp32 throughput for reference (doesn’t take your instruction mix into 
consideration) 

 

• Check for serialization 

– Number of replays due to serialization = difference between instructions_issued and 
instructions_executed counters 

– Profiler reports % of serialization metric, additional counters for smem bank conflicts 

– A concern only if code is instruction-bound and serialization percentage is high 
 

• Warp divergence 

– Profiler counters: divergent_branch, branch 

– Compare the two to see what percentage diverges 

• However, this only counts the branches, not the rest of serialized instructions 
55 
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Instruction Throughput: Optimization 

• Use intrinsics where possible ( __sin(), __sincos(), __exp(), etc.) 

– Available for a number of math.h functions 

– 2-3 bits lower precision, much higher throughput 

• Refer to the CUDA Programming Guide for details 

– Often a single HW instruction, whereas a non-intrinsic is a SW sequence 

• Additional compiler flags that also help (select GT200-level precision): 

– -ftz=true : flush denormals to 0 

– -prec-div=false : faster fp division instruction sequence (some precision loss)  

– -prec-sqrt=false : faster fp sqrt instruction sequence (some precision loss) 

• Make sure you do fp64 arithmetic only where you mean it: 

– fp64 throughput is lower than fp32 

– fp literals without an “f” suffix ( 34.7 ) are interpreted as fp64 per C standard 
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Serialization: Optimization 

• Shared memory bank conflicts: 

– Covered earlier in this presentation 
 

• Constant memory bank conflicts: 

– Ensure that all threads in a warp access the same __constant__ value 

– If many different values will be needed per warp: 

• Use gmem or smem instead 
 

• Warp serialization: 

– Try grouping threads that take the same path 

• Rearrange the data, pre-process the data 

• Rearrange how threads index data (may affect memory perf) 
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Instruction Throughput: Summary 

• Analyze: 

– Check achieved instruction throughput 

– Compare to HW peak (but keep instruction mix in mind) 

– Check percentage of instructions due to serialization 
 

• Optimizations: 

– Intrinsics, compiler options for expensive operations 

– Group threads that are likely to follow same execution path 
(minimize warp divergence) 

– Avoid SMEM bank conflicts (pad, rearrange data) 
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Latency Hiding 

59 
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Latency: Analysis 

• Suspect unhidden latency if: 

– Neither memory nor instruction throughput is close to HW theoretical rates 

– Poor overlap between mem and math 

• Full-kernel time is significantly larger than max{mem-only, math-only} 

– Refer to SC10 or GTC10 Analysis-Driven Optimization slides for details 
 

• Two possible causes: 

– Insufficient concurrent threads per multiprocessor to hide latency 

• Occupancy too low 

• Too few threads in kernel launch to load the GPU 

– elapsed time doesn’t change if problem size is increased (and with it the number of blocks/threads) 

– Too few concurrent threadblocks per SM when using __syncthreads() 

• __syncthreads()  can prevent overlap between math and mem within the same threadblock 

60 
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Simplified View of Latency and Syncs 

61 

Math-only time 

Memory-only time 

Full-kernel time, one large threadblock per SM 

time 

Kernel where most math cannot be 

executed until all data is loaded by 

the threadblock 



© NVIDIA 2011 

Simplified View of Latency and Syncs 

62 

Math-only time 

Memory-only time 

Full-kernel time, two threadblocks per SM 

  (each half the size of one large one) 

Full-kernel time, one large threadblock per SM 

time 

Kernel where most math cannot be 

executed until all data is loaded by 

the threadblock 
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Latency: Optimization 

• Insufficient threads or workload: 

– Increase the level of parallelism (more threads) 

– If occupancy is already high but latency is not being hidden: 

• Process several output elements per thread – gives more independent memory and arithmetic 
instructions (which get pipelined) 

• Barriers: 

– Can assess impact on perf by commenting out __syncthreads() 

• Incorrect result, but gives upper bound on improvement 

– Try running several smaller threadblocks 

• Think of it as “pipeled” threadblock execution 

• In some cases that costs extra bandwidth due to halos 

 

• Check out Vasily Volkov’s talk 2238 at GTC 2010 for a detailed treatment: 

– “Better Performance at Lower Latency” 
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Summary 

• Keep the 3 requirements for max performance in mind: 

– Sufficient parallelism 

– Coalesced memory access 

– Coherent (vector) execution within warps 

• Determine what limits kernel performance 

– Memory, arithmetic, latency 

• Optimize in the order of limiter severity 

– Use the profiler to determine performance impact first 

• Some code modifications help here too 
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Additional Resources 

• Fundamenal Optimizations / Analysis-Driven Optimization 

– More detailed treatment of this information, more cases studies 

– SC10: http://www.nvidia.com/object/sc10_cuda_tutorial.html 

– GTC10 (includes video recordings): 

• http://www.gputechconf.com/page/gtc-on-demand.html#2011 

• http://www.gputechconf.com/page/gtc-on-demand.html#2012 

• CUDA Best Practices Guide / CUDA Programming Guide 

– Included in the docs of any CUDA toolkit 

– All optimization materials apply to OpenCL and other programming models 

• CUDA Webinars: 

– http://developer.nvidia.com/gpu-computing-webinars 

– Shorter, more focused presentations (recorded video of past talks) 

• Memory optimization, local memory and register spilling, etc. 
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Questions? 
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