
© NVIDIA 2011

Performance Optimization Supercomputing 2011

Paulius Micikevicius| NVIDIA November 14, 2011

© NVIDIA 2011 © NVIDIA 2011

Requirements for Maximum Performance

2

© NVIDIA 2011

Requirements for Maximum Performance

• Have sufficient parallelism

– At least a few 1,000 threads per function

• Coalesced memory access

– By threads in the same “thread-vector”

• Coherent execution

– By threads in the same “thread-vector”

3

© NVIDIA 2011

Amount of Parallelism

• GPUs issue instructions in order

– Issue stalls when instruction arguments are not ready

• GPUs switch between threads to hide latency

– Context switch is free: thread state is partitioned (large register file), not
stored/restored

• Conclusion: need enough threads to hide math latency and to
saturate the memory bus

– Independent instructions (ILP) within a thread also help

• Very rough rule of thumb:

– Need ~512 threads per SM

– So, at least a few 1,000 threads per GPU

4

© NVIDIA 2011

Control Flow

• Single-Instruction Multiple-Threads (SIMT) model

– A single instruction is issued for a warp (thread-vector) at a time

– NVIDIA GPU: warp = a vector of 32 threads

• Compare to SIMD:

– SIMD requires vector code in each thread

– SIMT allows you to write scalar code per thread

• Vectorization is guaranteed by hardware

• Note:

– All contemporary processors (CPUs and GPUs) are built by
aggregating vector processing unit

5

© NVIDIA 2011

Control Flow

if (...)

{

 // then-clause

}

else

{

 // else-clause

}

in
s
tr

u
c
ti

o
n

s

© NVIDIA 2011

Execution within warps is coherent
in

s
tr

u
c
ti

o
n

s
 /
 t

im
e

Warp

(“vector” of threads)

35 34 33 63 62 32 3 2 1 31 30 0

Warp

(“vector” of threads)

© NVIDIA 2011

Execution diverges within a warp
in

s
tr

u
c
ti

o
n

s
 /
 t

im
e

3 2 1 31 30 0 35 34 33 63 62 32

© NVIDIA 2011

Memory Access

• Addresses from a warp (“thread-vector”) are
converted into line requests
– line sizes: 32B and 128B

– Goal is to maximally utilize the bytes in these lines

9

...

96 192 128 160 224 288 256 32 64 352 320 384
Memory addresses

0

addresses from a warp are within cache line

© NVIDIA 2011

10

...

96 192 128 160 224 288 256 32 64 352 320 384
Memory addresses

addresses from a warp are within cache line

0

...
scattered addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 416
Memory addresses

0

© NVIDIA 2011 © NVIDIA 2011

Performance Optimization

11

© NVIDIA 2011

Performance Optimization Process

• Use appropriate performance metric for each kernel

– For example, Gflops/s don’t make sense for a bandwidth-bound kernel

• Determine what limits kernel performance

– Memory throughput

– Instruction throughput

– Latency

– Combination of the above

• Address the limiters in the order of importance

– Determine how close to the HW limits the resource is being used

– Analyze for possible inefficiencies

– Apply optimizations

• Often these will just fall out from how HW operates

12

© NVIDIA 2011

3 Ways to Assess Performance Limiters

• Algorithmic

– Based on algorithm’s memory and arithmetic requirements

– Least accurate: undercounts instructions and potentially memory
accesses

• Profiler

– Based on profiler-collected memory and instruction counters

– More accurate, but doesn’t account well for overlapped memory and
arithmetic

• Code modification

– Based on source modified to measure memory-only and arithmetic-only
times

– Most accurate, however cannot be applied to all codes

13

© NVIDIA 2011

Things to Know About Your GPU

• Theoretical memory throughput

– For example, Tesla M2090 theory is 177 GB/s

• Theoretical instruction throughput

– Varies by instruction type

• refer to the CUDA Programming Guide (Section 5.4.1) for details

– Tesla M2090 theory is 665 GInstr/s for fp32 instructions

• Half that for fp64

• I’m counting instructions per thread

• Rough “balanced” instruction:byte ratio

– For example, 3.76:1 from above (fp32 instr : bytes)

• Higher than this will usually mean instruction-bound code

• Lower than this will usually mean memory-bound code

14

© NVIDIA 2011

Another Way to Use the Profiler

• VisualProfiler reports instruction and memory throughputs

– IPC (instructions per clock) for instructions

– GB/s achieved for memory (and L2)

• Compare those with the theory for the HW

– Profiler will also report the theoretical best

• Though for IPC it assumes fp32 instructions, it DOES NOT take instruction mix into consideration

– If one of the metrics is close to the hw peak, you’re likely limited by it

– If neither metric is close to the peak, then unhidden latency is likely an issue

– “close” is approximate, I’d say 70% of theory or better

• Example: vector add

– IPC: 0.55 out of 2.0

– Memory throughput: 130 GB/s out of 177 GB/s

– Conclusion: memory bound

15

© NVIDIA 2011

Notes on the Profiler

• Most counters are reported per Streaming Multiprocessor (SM)

– Not entire GPU

– Exceptions: L2 and DRAM counters

• A single run can collect a few counters

– Multiple runs are needed when profiling more counters

• Done automatically by the Visual Profiler

• Have to be done manually using command-line profiler

• Counter values may not be exactly the same for repeated runs

– Threadblocks and warps are scheduled at run-time

– So, “two counters being equal” usually means “two counters within a small delta”

• Refer to the profiler documentation for more information

16

© NVIDIA 2011 © NVIDIA 2011

Global Memory Optimization

17

© NVIDIA 2011

Fermi Memory Hierarchy Review

L2

Global Memory

Registers

L1

SM-N

SMEM

Registers

L1

SM-0

SMEM

Registers

L1

SM-1

SMEM

© NVIDIA 2011

Fermi Memory Hierarchy Review

• Local storage

– Each thread has own local storage

– Mostly registers (managed by the compiler)

• Shared memory / L1

– Program configurable: 16KB shared / 48 KB L1 OR 48KB shared / 16KB L1

– Shared memory is accessible by the threads in the same threadblock

– Low latency

– Very high throughput (1.33 TB/s aggregate on Tesla M2090)

• L2

– All accesses to global memory go through L2, including copies to/from CPU host

– 768 KB on Tesla M2090

• Global memory

– Accessible by all threads as well as host (CPU)

– Higher latency (400-800 cycles)

– Throughput: 177 GB/s on Tesla M2090

© NVIDIA 2011

Programming for L1 and L2

• Short answer: DON’T

• GPU caches are not intended for the same use as CPU caches

– Smaller size (especially per thread), so not aimed at temporal reuse

– Intended to smooth out some access patterns, help with spilled
registers, etc.

• Don’t try to block for L1/L2 like you would on CPU

– You have 100s to 1,000s of run-time scheduled threads hitting the
caches

– If it is possible to block for L1 then block for SMEM

• Same size, same bandwidth, hw will not evict behind your back

© NVIDIA 2011

Fermi Global Memory Operations

• Memory operations are executed per warp

– 32 threads in a warp provide memory addresses

– Hardware determines into which lines those addresses fall

• Two types of loads:

– Caching (default mode)

• Attempts to hit in L1, then L2, then GMEM

• Load granularity is 128-byte line

– Non-caching

• Compile with –Xptxas –dlcm=cg option to nvcc

• Attempts to hit in L2, then GMEM

– Does not hit in L1, invalidates the line if it’s in L1 already

• Load granularity is 32-bytes

• Stores:

– Invalidate L1, go at least to L2, 32-byte granularity

© NVIDIA 2011

Caching Load

• Scenario:

– Warp requests 32 aligned, consecutive 4-byte words

• Addresses fall within 1 cache-line

– Warp needs 128 bytes

– 128 bytes move across the bus on a miss

– Bus utilization: 100%

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

© NVIDIA 2011

Non-caching Load

• Scenario:

– Warp requests 32 aligned, consecutive 4-byte words

• Addresses fall within 4 segments

– Warp needs 128 bytes

– 128 bytes move across the bus on a miss

– Bus utilization: 100%

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

© NVIDIA 2011

Caching Load

...

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

addresses from a warp

0

• Scenario:

– Warp requests 32 aligned, permuted 4-byte words

• Addresses fall within 1 cache-line

– Warp needs 128 bytes

– 128 bytes move across the bus on a miss

– Bus utilization: 100%

© NVIDIA 2011

Non-caching Load

...

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

addresses from a warp

0

• Scenario:

– Warp requests 32 aligned, permuted 4-byte words

• Addresses fall within 4 segments

– Warp needs 128 bytes

– 128 bytes move across the bus on a miss

– Bus utilization: 100%

© NVIDIA 2011

Caching Load

96 192 128 160 224 288 256

...
addresses from a warp

32 64 0 352 320 384 448 416
Memory addresses

• Scenario:

– Warp requests 32 misaligned, consecutive 4-byte words

• Addresses fall within 2 cache-lines

– Warp needs 128 bytes

– 256 bytes move across the bus on misses

– Bus utilization: 50%

© NVIDIA 2011

Non-caching Load

96 192 128 160 224 288 256

...
addresses from a warp

32 64 0 352 320 384 448 416
Memory addresses

• Scenario:

– Warp requests 32 misaligned, consecutive 4-byte words

• Addresses fall within at most 5 segments

– Warp needs 128 bytes

– At most 160 bytes move across the bus

– Bus utilization: at least 80%
• Some misaligned patterns will fall within 4 segments, so 100% utilization

© NVIDIA 2011

Caching Load

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

• Scenario:

– All threads in a warp request the same 4-byte word

• Addresses fall within a single cache-line

– Warp needs 4 bytes

– 128 bytes move across the bus on a miss

– Bus utilization: 3.125%

© NVIDIA 2011

Non-caching Load

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

• Scenario:

– All threads in a warp request the same 4-byte word

• Addresses fall within a single segment

– Warp needs 4 bytes

– 32 bytes move across the bus on a miss

– Bus utilization: 12.5%

© NVIDIA 2011

Caching Load

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

• Scenario:

– Warp requests 32 scattered 4-byte words

• Addresses fall within N cache-lines

– Warp needs 128 bytes

– N*128 bytes move across the bus on a miss

– Bus utilization: 128 / (N*128)

© NVIDIA 2011

Non-caching Load

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

• Scenario:

– Warp requests 32 scattered 4-byte words

• Addresses fall within N segments

– Warp needs 128 bytes

– N*32 bytes move across the bus on a miss

– Bus utilization: 128 / (N*32) (4x higher than caching loads)

© NVIDIA 2011

Load Caching and L1 Size

• Non-caching loads can improve performance when:

– Loading scattered words or only a part of a warp issues a load

• Benefit: memory transaction is smaller, so useful payload is a larger percentage

• Loading halos, for example

– Spilling registers (reduce line fighting with spillage)

• Large L1 can improve perf when:

– Spilling registers (more lines in the cache -> fewer evictions)

– Some misaligned, strided access patterns

– 16-KB L1 / 48-KB smem OR 48-KB L1 / 16-KB smem

• CUDA call, can be set for the app or per-kernel

• How to use:

– Just try a 2x2 experiment matrix: {caching, non-caching} x {48-L1, 16-L1}

• Keep the best combination - same as you would with any HW managed cache, including CPUs

© NVIDIA 2011

Memory Throughput Analysis

• Throughput:

– From app point of view: count bytes requested by the application

– From HW point of view: count bytes moved by the hardware

– The two can be different

• Scattered/misaligned pattern: not all transaction bytes are utilized

• Broadcast: the same small transaction serves many requests

• Two aspects to analyze for performance impact:

– Address pattern

– Number of concurrent accesses in flight

33

© NVIDIA 2011

• Determining that access pattern is problematic:

– Use the profiler to check load and store efficiency

• Efficiency = bytes requested by the app / bytes transferred

• Will slow down code substantially:

– Bytes-requested is measured by adding code for every load/store

– So, you may want to run for smaller data set

• If efficiency isn’t 100%, then bandwidth is being wasted

– Below 50% certainly means scattered accesses

– Above 50% could be scattered or misaligned

– Derive app-requested bytes yourself

• Still use profiler to get HW throughput (fast, no sw modification)

• Determining that the number of concurrent accesses is insufficient:

– Throughput from HW point of view is much lower than theoretical

 34

Memory Throughput Analysis

© NVIDIA 2011

Memory Throughput Analysis

• Determining that access pattern is problematic:

– Use the profiler to check load and store efficiency

• Efficiency = bytes requested by the app / bytes transferred

• Will slow down code substantially:

– Bytes-requested is measured by adding code for every load/store

– So, you may want to run for smaller data set

• If efficiency isn’t 100%, then bandwidth is being wasted

– Below 50% certainly means scattered accesses

– Above 50% could be scattered or misaligned

– Compare app throughput to HW throughput

• Use profiler to get HW throughput (fast, no sw modification)

• Must be able to compute how many bytes application is requested

• Determining that the number of concurrent accesses is insufficient:

– Throughput from HW point of view is much lower than theoretical

 35

© NVIDIA 2011

• Determining that access pattern is problematic:

– Use the profiler to check load and store efficiency

• Efficiency = bytes requested by the app / bytes transferred

• Will slow down code substantially:

– Bytes-requested is measured by adding code for every load/store

– So, you may want to run for smaller data set

• If efficiency isn’t 100%, then bandwidth is being wasted

– Below 50% certainly means scattered accesses

– Above 50% could be scattered or misaligned

– Compare app throughput to HW throughput

• Use profiler to get HW throughput (fast, no sw modification)

• Must be able to compute how many bytes application is requested

• Determining that the number of concurrent accesses is insufficient:

– Throughput from HW point of view is much lower than theoretical

 36

Memory Throughput Analysis

© NVIDIA 2011

Optimization: Address Pattern

• Coalesce the address pattern

– Minimize the lines that a warp addresses in a given access

• 128-byte lines for caching loads, 32-byte segments for non-caching loads, stores

– Use structure-of-arrays storage (as opposed to array of structures)

• You have to do this for any architecture, including CPUs

– Pad multi-dimensional structures so that accesses by warps are aligned on line
boundaries

• Try using non-caching loads

– Smaller transactions (32B instead of 128B)

• more efficient for scattered or partially-filled patterns

• Try fetching data from texture

– Smaller transactions and different caching

– Cache not polluted by other gmem loads

37

© NVIDIA 2011

Optimization: Access Concurrency

• Have enough concurrent accesses to saturate the bus

– Need (mem_latency)x(bandwidth) bytes in flight (Little’s law)

• Ways to increase concurrent accesses:

– Increase occupancy (run more threads concurrently)

• Adjust threadblock dimensions

– To maximize occupancy at given register and smem requirements

• Reduce register count (-maxrregcount option, or __launch_bounds__)

– Modify code to process several elements per thread

38

© NVIDIA 2011

Some Experimental Data

• Increment a 64M element array

– Two accesses per thread (load then store, but they are dependent)

• Thus, each warp (32 threads) has one outstanding transaction at a time

• Tesla M2090, ECC off, theoretical bandwidth: 177 GB/s

Several independent smaller
accesses have the same effect
as one larger one.

For example:

Four 32-bit ~= one 128-bit

39

© NVIDIA 2011

Summary: GMEM Optimization

• Strive for perfect coalescing per warp

– Align starting address (may require padding)

– A warp should access within a contiguous region

– Structure of Arrays is better than Array of Structures

• Have enough concurrent accesses to saturate the bus

– Launch enough threads to maximize throughput

• Latency is hidden by switching threads (warps)

– If needed, process several elements per thread

• More concurrent loads/stores

• Try L1 and caching configurations to see which one works best

– Caching vs non-caching loads (compiler option)

– 16KB vs 48KB L1 (CUDA call)

© NVIDIA 2011 © NVIDIA 2011

Shared Memory Optimization

41

© NVIDIA 2011

Shared Memory

• Uses:

– Inter-thread communication within a block

– Cache data to reduce redundant global memory accesses

– Use it to improve global memory access patterns

• Fermi organization:

– 32 banks, 4-byte wide banks

– Successive 4-byte words belong to different banks

• Performance:

– 4 bytes per bank per 2 clocks per multiprocessor: 1.3 TB/s on M2090

– smem accesses are issued per 32 threads (warp)

– serialization: if n threads in a warp access different 4-byte words in the same
bank, n accesses are executed serially

– multicast: n threads access the same word in one fetch

• Could be different bytes within the same word

© NVIDIA 2011

Bank Addressing Examples

• No Bank Conflicts • No Bank Conflicts

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© NVIDIA 2011

Bank Addressing Examples

• 2-way Bank Conflicts • 8-way Bank Conflicts

Thread 31
Thread 30
Thread 29
Thread 28

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 31

Bank 7

Bank 2
Bank 1
Bank 0 x8

x8

© NVIDIA 2011

Profiling SMEM Bank Conflicts

• Find out whether:

– Bank conflicts are occuring

– Bank conflicts significantly impact performance

• No need to optimize if they don’t

• Impact on performance is significant if:

– Kernel is limited by instruction throughput

– Shared memory bank conflicts are a significant percentage of instructions issued

• Use the profiler to get:

– Bank conflict count, instructions-issued count

• Currently bank-conflicts get overcounted for accesses greater than 32-bit words:

– Divide by 2 for 64-bit accesses (double, float2, etc.)

– Divide by 4 for 128-bit accesses (float4, etc.)

© NVIDIA 2011

Shared Memory: Avoiding Bank Conflicts

• 32x32 SMEM array

• Warp accesses a column:

– 32-way bank conflicts (threads in a warp access the same bank)

0 1 2 31

Bank 0

Bank 1

 …

Bank 31

0

1

2

31

© NVIDIA 2011

Shared Memory: Avoiding Bank Conflicts

• Add a column for padding:

– 32x33 SMEM array

• Warp accesses a column:

– 32 different banks, no bank conflicts

0 1 2 31 padding

Bank 0

Bank 1

 …

Bank 31

0

1

2

31

© NVIDIA 2011

Case Study: SMEM Bank Conflicts

• One of CAM-HOMME kernels (climate simulation), fp64

• Profiler values:

– Instructions:Byte ratio, reported by profiler: 4

• Suggests kernel is instruction limited (even before adjusting for fp64 throughput)

– Instruction counts

• Executed / issued: 2,406,426 / 2,756,140

• Difference: 349,714 (12.7% of instructions issued were “replays”)

– SMEM instructions:

• Load + store: 421,785 + 95,172 = 516,957

• Bank conflicts: 674,856 (really 337,428 because of double-counting for fp64)

• So, SMEM bank conflicts make up 12.2% of all instructions (337,428 / 2,756,140)

• Solution: pad shared memory

– Performance increased by ~15%

48

© NVIDIA 2011 © NVIDIA 2011

Texture and Constant Data

49

© NVIDIA 2011

Constant and Texture Data

• Constants:

– __constant__ qualifier in declarations

– Up to 64KB

– Ideal when the same address is read by all threads in a warp (FD coefficients, etc.)

• Throughput is 4B per SM per clock

• Textures:

– Dedicated hardware for:

• Out-of-bounds index handling (clamp or wrap-around)

• Optional interpolation (think: using fp indices for arrays)

– Linear, bilinear, trilinear

• Optional format conversion

– {char, short, int} -> float

• Operation:

– Both textures and constants reside in global memory

– Both are read via dedicated caches

© NVIDIA 2011 © NVIDIA 2011

Instruction Throughput and Optimization

51

© NVIDIA 2011

Kernel Execution

• Threadblocks are assigned to SMs

– Done at run-time, so don’t assume any particular order

– Once a threadblock is assigned to an SM, it stays resident until all its threads complete

• It’s not migrated to another SM

• It’s not swapped out for another threadblock

• Instructions are issued/executed per warp

– Warp = 32 consecutive threads

• Think of it as a “vector” of 32 threads

• The same instruction is issued to the entire warp

• Scheduling

– Warps are scheduled at run-time

– Hardware picks from warps that have an instruction ready to execute

• Ready = all arguments are ready

– Instruction latency is hidden by executing other warps
52

© NVIDIA 2011

Control Flow

• Divergent branches:

– Threads within a single warp take different paths
• if-else, ...

– Different execution paths within a warp are serialized

• Different warps can execute different code with no impact on
performance

• Avoid diverging within a warp

– Example with divergence:
• if (threadIdx.x > 2) {...} else {...}

• Branch granularity < warp size

– Example without divergence:
• if (threadIdx.x / WARP_SIZE > 2) {...} else {...}

• Branch granularity is a whole multiple of warp size

© NVIDIA 2011

Possible Performance Limiting Factors

• Raw instruction throughput

– Know the kernel instruction mix

– fp32, fp64, int, mem, transcendentals, etc. have different throughputs

• Refer to the CUDA Programming Guide / Best Practices Guide

• Can examine assembly: use cuobjdump tool provided with CUDA toolkit

– A lot of divergence can “waste” instructions

• Instruction serialization

– Occurs when threads in a warp issue the same instruction in sequence

• As opposed to the entire warp issuing the instruction at once

• Think of it as “replaying” the same instruction for different threads in a warp

– Some causes:

• Shared memory bank conflicts

• Constant memory bank conflicts

54

© NVIDIA 2011

Instruction Throughput: Analysis

• Compare achieved instruction throughput to HW capabilities

– Profiler reports achieved throughput as IPC (instructions per clock)

• As percentage of theoretical peak for pre-Fermi GPUs

– Peak instruction throughput is documented in the Programming Guide

• Profiler also provides peak fp32 throughput for reference (doesn’t take your instruction mix into
consideration)

• Check for serialization

– Number of replays due to serialization = difference between instructions_issued and
instructions_executed counters

– Profiler reports % of serialization metric, additional counters for smem bank conflicts

– A concern only if code is instruction-bound and serialization percentage is high

• Warp divergence

– Profiler counters: divergent_branch, branch

– Compare the two to see what percentage diverges

• However, this only counts the branches, not the rest of serialized instructions
55

© NVIDIA 2011

Instruction Throughput: Optimization

• Use intrinsics where possible (__sin(), __sincos(), __exp(), etc.)

– Available for a number of math.h functions

– 2-3 bits lower precision, much higher throughput

• Refer to the CUDA Programming Guide for details

– Often a single HW instruction, whereas a non-intrinsic is a SW sequence

• Additional compiler flags that also help (select GT200-level precision):

– -ftz=true : flush denormals to 0

– -prec-div=false : faster fp division instruction sequence (some precision loss)

– -prec-sqrt=false : faster fp sqrt instruction sequence (some precision loss)

• Make sure you do fp64 arithmetic only where you mean it:

– fp64 throughput is lower than fp32

– fp literals without an “f” suffix (34.7) are interpreted as fp64 per C standard

56

© NVIDIA 2011

Serialization: Optimization

• Shared memory bank conflicts:

– Covered earlier in this presentation

• Constant memory bank conflicts:

– Ensure that all threads in a warp access the same __constant__ value

– If many different values will be needed per warp:

• Use gmem or smem instead

• Warp serialization:

– Try grouping threads that take the same path

• Rearrange the data, pre-process the data

• Rearrange how threads index data (may affect memory perf)

57

© NVIDIA 2011

Instruction Throughput: Summary

• Analyze:

– Check achieved instruction throughput

– Compare to HW peak (but keep instruction mix in mind)

– Check percentage of instructions due to serialization

• Optimizations:

– Intrinsics, compiler options for expensive operations

– Group threads that are likely to follow same execution path
(minimize warp divergence)

– Avoid SMEM bank conflicts (pad, rearrange data)

58

© NVIDIA 2011 © NVIDIA 2011

Latency Hiding

59

© NVIDIA 2011

Latency: Analysis

• Suspect unhidden latency if:

– Neither memory nor instruction throughput is close to HW theoretical rates

– Poor overlap between mem and math

• Full-kernel time is significantly larger than max{mem-only, math-only}

– Refer to SC10 or GTC10 Analysis-Driven Optimization slides for details

• Two possible causes:

– Insufficient concurrent threads per multiprocessor to hide latency

• Occupancy too low

• Too few threads in kernel launch to load the GPU

– elapsed time doesn’t change if problem size is increased (and with it the number of blocks/threads)

– Too few concurrent threadblocks per SM when using __syncthreads()

• __syncthreads() can prevent overlap between math and mem within the same threadblock

60

© NVIDIA 2011

Simplified View of Latency and Syncs

61

Math-only time

Memory-only time

Full-kernel time, one large threadblock per SM

time

Kernel where most math cannot be

executed until all data is loaded by

the threadblock

© NVIDIA 2011

Simplified View of Latency and Syncs

62

Math-only time

Memory-only time

Full-kernel time, two threadblocks per SM

 (each half the size of one large one)

Full-kernel time, one large threadblock per SM

time

Kernel where most math cannot be

executed until all data is loaded by

the threadblock

© NVIDIA 2011

Latency: Optimization

• Insufficient threads or workload:

– Increase the level of parallelism (more threads)

– If occupancy is already high but latency is not being hidden:

• Process several output elements per thread – gives more independent memory and arithmetic
instructions (which get pipelined)

• Barriers:

– Can assess impact on perf by commenting out __syncthreads()

• Incorrect result, but gives upper bound on improvement

– Try running several smaller threadblocks

• Think of it as “pipeled” threadblock execution

• In some cases that costs extra bandwidth due to halos

• Check out Vasily Volkov’s talk 2238 at GTC 2010 for a detailed treatment:

– “Better Performance at Lower Latency”

 63

© NVIDIA 2011

Summary

• Keep the 3 requirements for max performance in mind:

– Sufficient parallelism

– Coalesced memory access

– Coherent (vector) execution within warps

• Determine what limits kernel performance

– Memory, arithmetic, latency

• Optimize in the order of limiter severity

– Use the profiler to determine performance impact first

• Some code modifications help here too

64

© NVIDIA 2011

Additional Resources

• Fundamenal Optimizations / Analysis-Driven Optimization

– More detailed treatment of this information, more cases studies

– SC10: http://www.nvidia.com/object/sc10_cuda_tutorial.html

– GTC10 (includes video recordings):

• http://www.gputechconf.com/page/gtc-on-demand.html#2011

• http://www.gputechconf.com/page/gtc-on-demand.html#2012

• CUDA Best Practices Guide / CUDA Programming Guide

– Included in the docs of any CUDA toolkit

– All optimization materials apply to OpenCL and other programming models

• CUDA Webinars:

– http://developer.nvidia.com/gpu-computing-webinars

– Shorter, more focused presentations (recorded video of past talks)

• Memory optimization, local memory and register spilling, etc.

65

http://www.nvidia.com/object/sc10_cuda_tutorial.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars

© NVIDIA 2011

Questions?

66

