

Performance Optimization

Paulius Micikevicius | NVIDIA

Supercomputing 2011

November 14, 2011

Requirements for Maximum Performance

Requirements for Maximum Performance

- **Have sufficient parallelism**
 - At least a few 1,000 threads per function
- **Coalesced memory access**
 - By threads in the same “thread-vector”
- **Coherent execution**
 - By threads in the same “thread-vector”

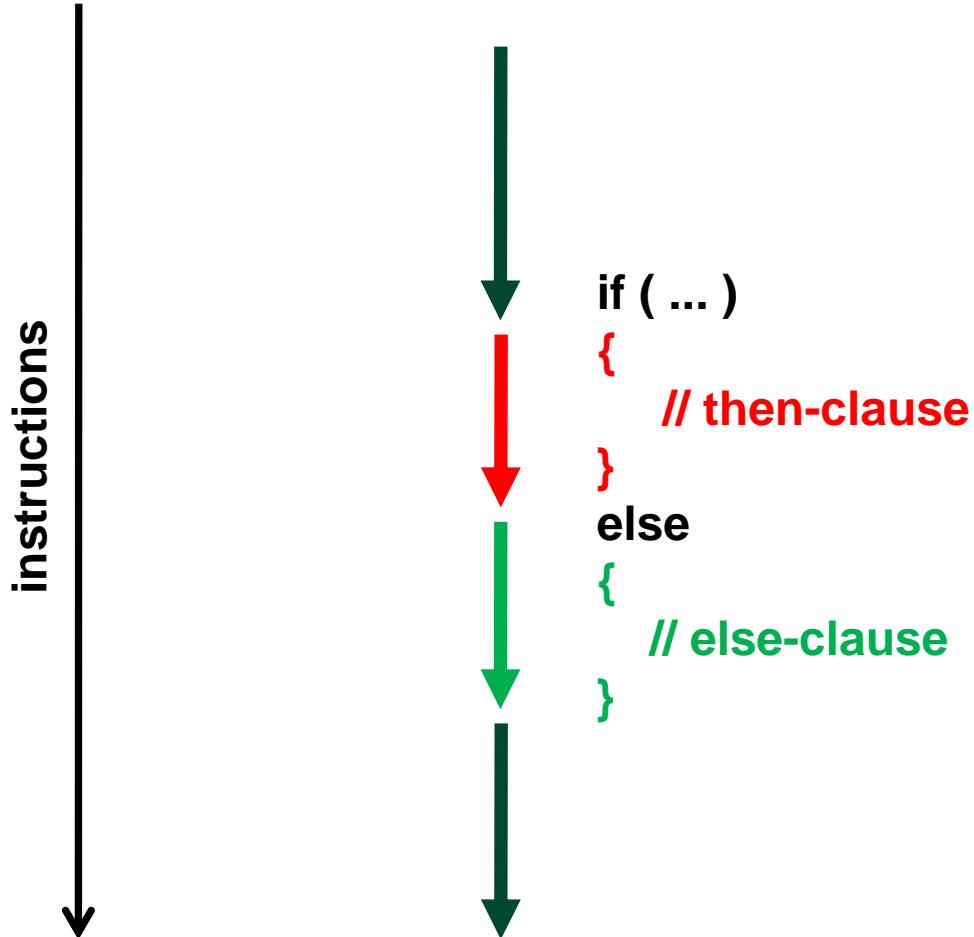
Amount of Parallelism

- **GPUs issue instructions in order**
 - Issue stalls when instruction arguments are not ready
- **GPUs switch between threads to hide latency**
 - Context switch is free: thread state is partitioned (large register file), not stored/restored
- **Conclusion: need enough threads to hide math latency and to saturate the memory bus**
 - Independent instructions (ILP) within a thread also help
- **Very rough rule of thumb:**
 - Need ~512 threads per SM
 - So, at least a few 1,000 threads per GPU

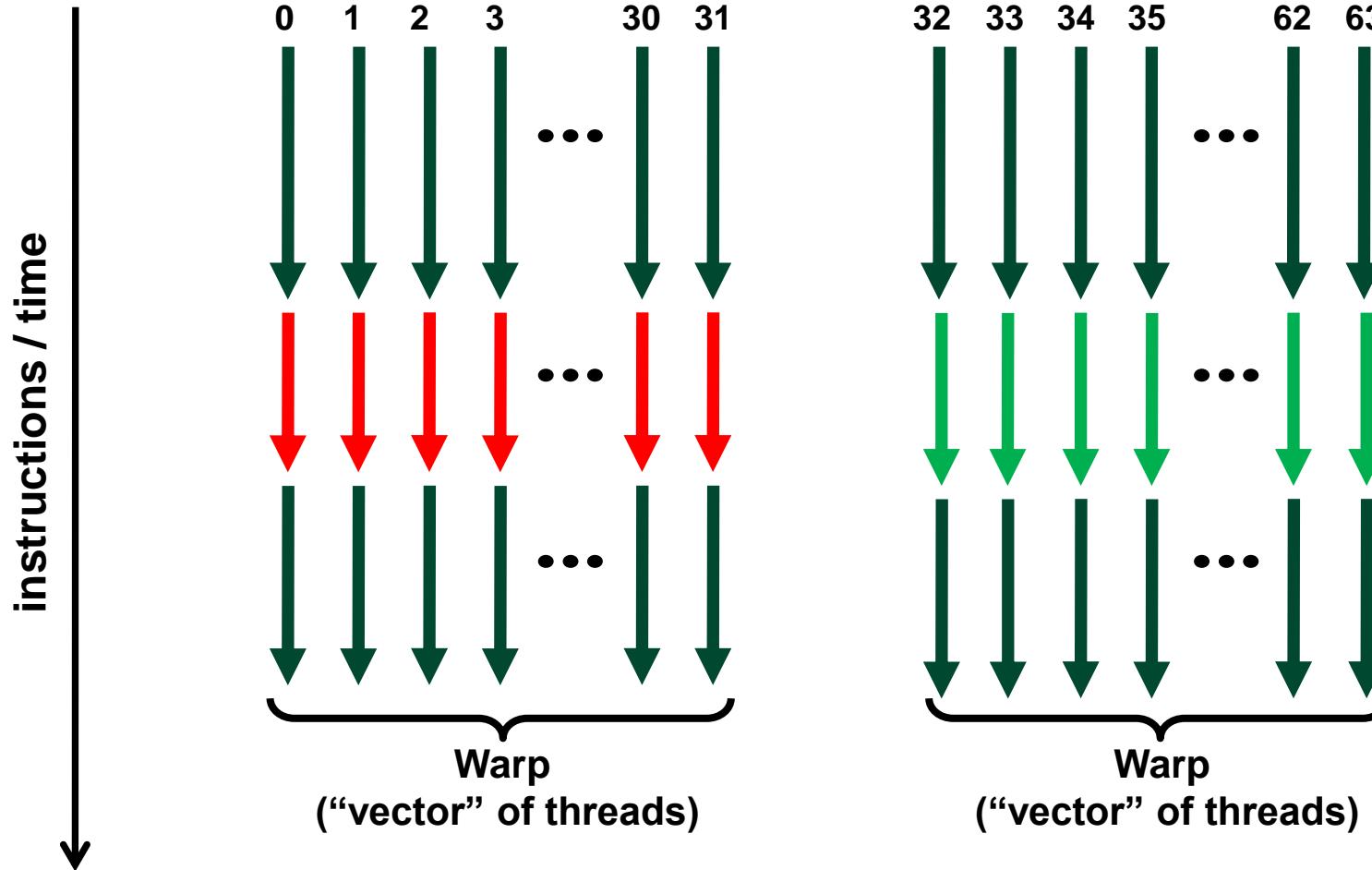
Control Flow

- **Single-Instruction Multiple-Threads (SIMT) model**
 - A single instruction is issued for a warp (thread-vector) at a time
 - NVIDIA GPU: warp = a vector of 32 threads
- **Compare to SIMD:**
 - SIMD requires vector code in each thread
 - SIMT allows you to write scalar code per thread
 - Vectorization is guaranteed by hardware
- **Note:**
 - All contemporary processors (CPUs and GPUs) are built by aggregating vector processing unit

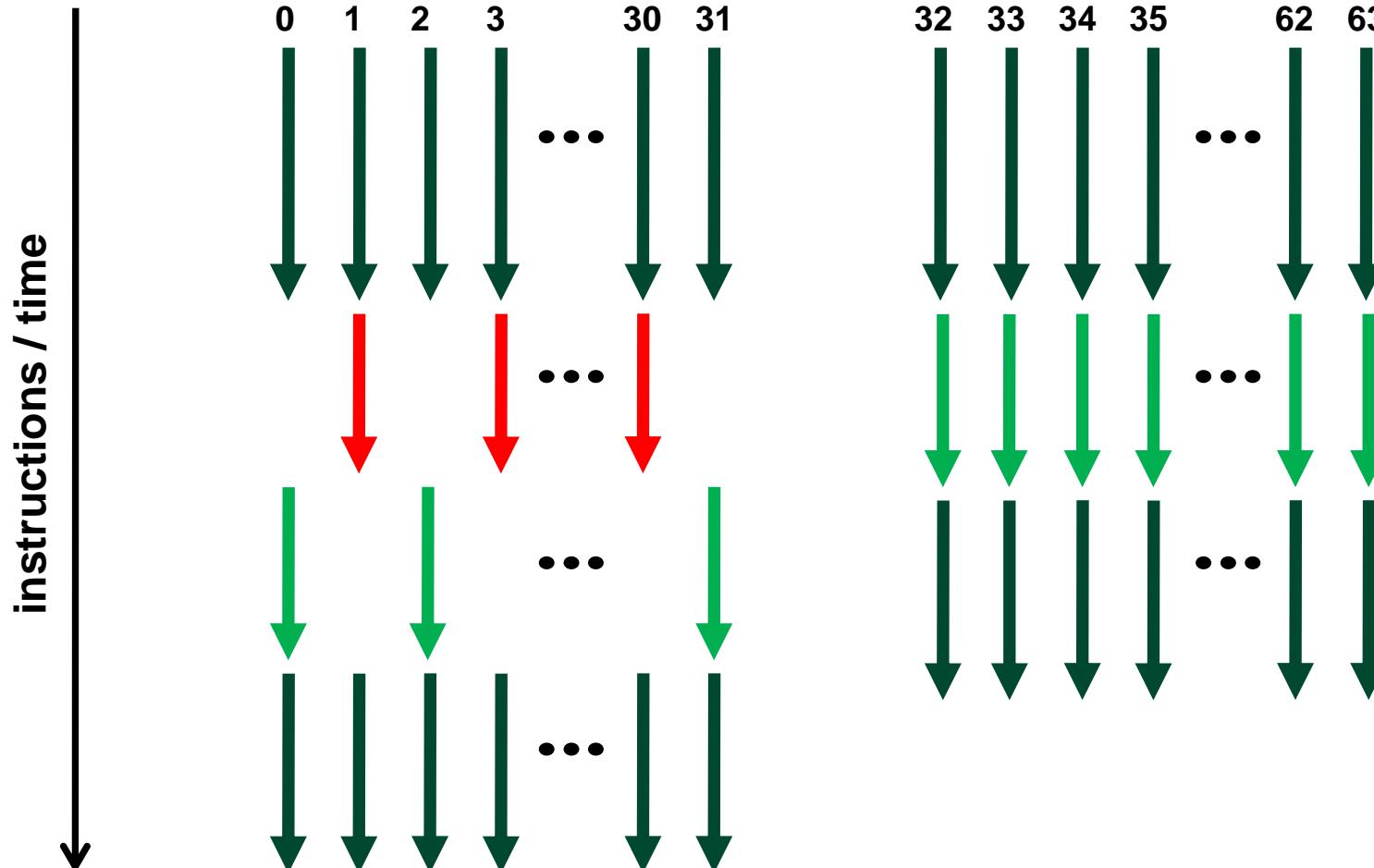
Control Flow



Execution within warps is coherent

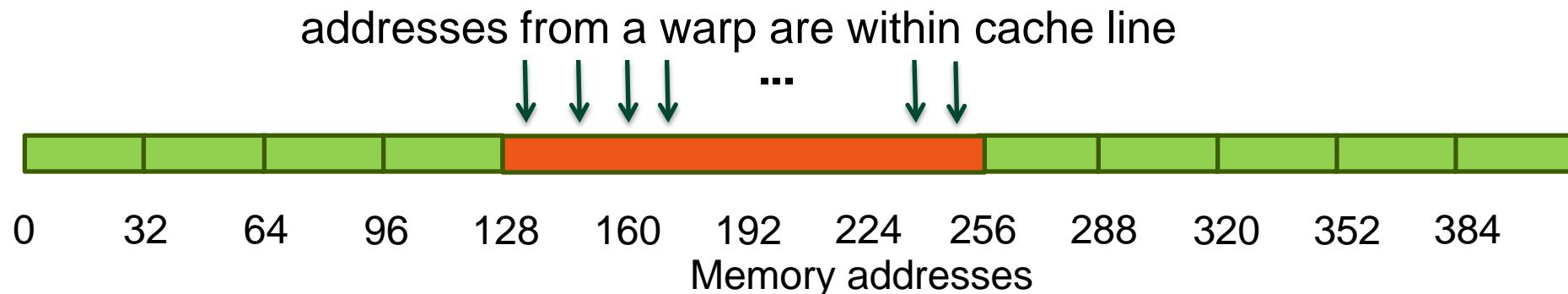


Execution diverges within a warp

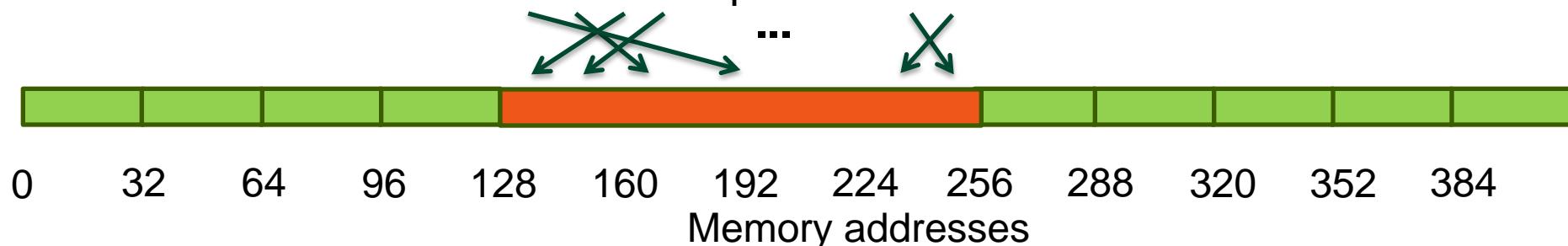


Memory Access

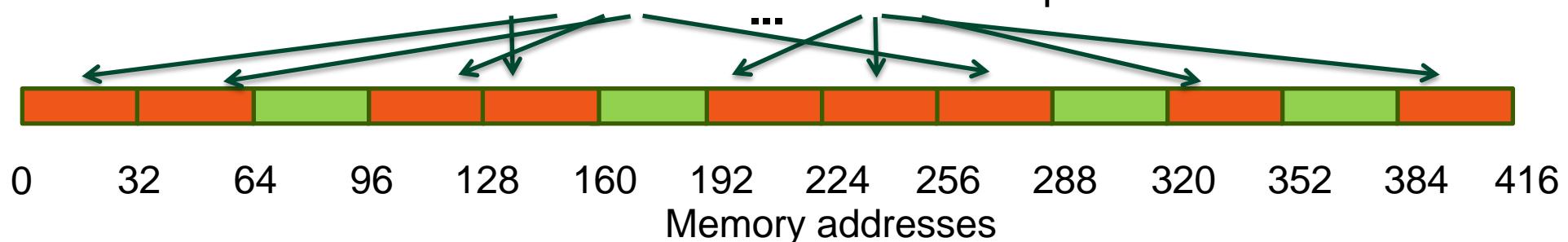
- Addresses from a warp (“thread-vector”) are converted into line requests
 - line sizes: 32B and 128B
 - Goal is to maximally utilize the bytes in these lines



addresses from a warp are within cache line



scattered addresses from a warp



Performance Optimization

Performance Optimization Process

- **Use appropriate performance metric for each kernel**
 - For example, Gflops/s don't make sense for a bandwidth-bound kernel
- **Determine what limits kernel performance**
 - Memory throughput
 - Instruction throughput
 - Latency
 - Combination of the above
- **Address the limiters in the order of importance**
 - Determine how close to the HW limits the resource is being used
 - Analyze for possible inefficiencies
 - Apply optimizations
 - Often these will just fall out from how HW operates

3 Ways to Assess Performance Limiters

- **Algorithmic**
 - Based on algorithm's memory and arithmetic requirements
 - Least accurate: undercounts instructions and potentially memory accesses
- **Profiler**
 - Based on profiler-collected memory and instruction counters
 - More accurate, but doesn't account well for overlapped memory and arithmetic
- **Code modification**
 - Based on source modified to measure memory-only and arithmetic-only times
 - Most accurate, however cannot be applied to all codes

Things to Know About Your GPU

- **Theoretical memory throughput**
 - For example, Tesla M2090 theory is **177 GB/s**
- **Theoretical instruction throughput**
 - Varies by instruction type
 - refer to the CUDA Programming Guide (Section 5.4.1) for details
 - Tesla M2090 theory is **665 Glnstr/s** for fp32 instructions
 - Half that for fp64
 - I'm counting instructions per thread
- **Rough “balanced” instruction:byte ratio**
 - For example, **3.76:1** from above (fp32 instr : bytes)
 - Higher than this will usually mean instruction-bound code
 - Lower than this will usually mean memory-bound code

Another Way to Use the Profiler

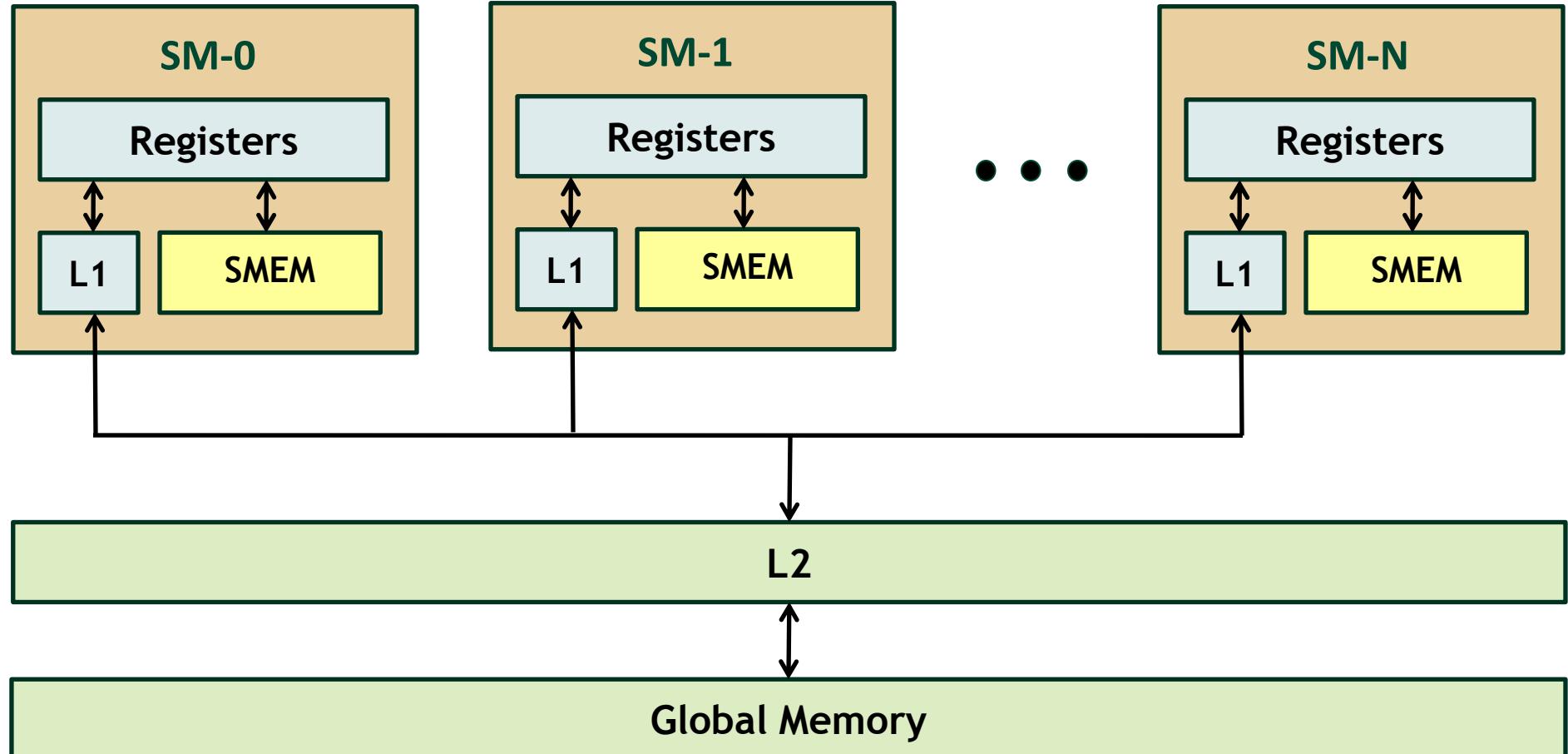
- **VisualProfiler reports instruction and memory throughputs**
 - IPC (instructions per clock) for instructions
 - GB/s achieved for memory (and L2)
- **Compare those with the theory for the HW**
 - Profiler will also report the theoretical best
 - Though for IPC it assumes fp32 instructions, it DOES NOT take instruction mix into consideration
 - If one of the metrics is close to the hw peak, you're likely limited by it
 - If neither metric is close to the peak, then unhidden latency is likely an issue
 - “close” is approximate, I'd say 70% of theory or better
- **Example: vector add**
 - IPC: **0.55** out of **2.0**
 - Memory throughput: **130 GB/s** out of **177 GB/s**
 - Conclusion: memory bound

Notes on the Profiler

- **Most counters are reported per Streaming Multiprocessor (SM)**
 - Not entire GPU
 - Exceptions: L2 and DRAM counters
- **A single run can collect a few counters**
 - Multiple runs are needed when profiling more counters
 - Done automatically by the Visual Profiler
 - Have to be done manually using command-line profiler
- **Counter values may not be exactly the same for repeated runs**
 - Threadblocks and warps are scheduled at run-time
 - So, “two counters being equal” usually means “two counters within a small delta”
- **Refer to the profiler documentation for more information**

Global Memory Optimization

Fermi Memory Hierarchy Review



Fermi Memory Hierarchy Review

- **Local storage**

- Each thread has own local storage
- Mostly registers (managed by the compiler)

- **Shared memory / L1**

- Program configurable: 16KB shared / 48 KB L1 OR 48KB shared / 16KB L1
- Shared memory is accessible by the threads in the same threadblock
- Low latency
- Very high throughput (**1.33 TB/s** aggregate on Tesla M2090)

- **L2**

- All accesses to global memory go through L2, including copies to/from CPU host
- 768 KB on Tesla M2090

- **Global memory**

- Accessible by all threads as well as host (CPU)
- Higher latency (**400-800** cycles)
- Throughput: **177 GB/s** on Tesla M2090

Programming for L1 and L2

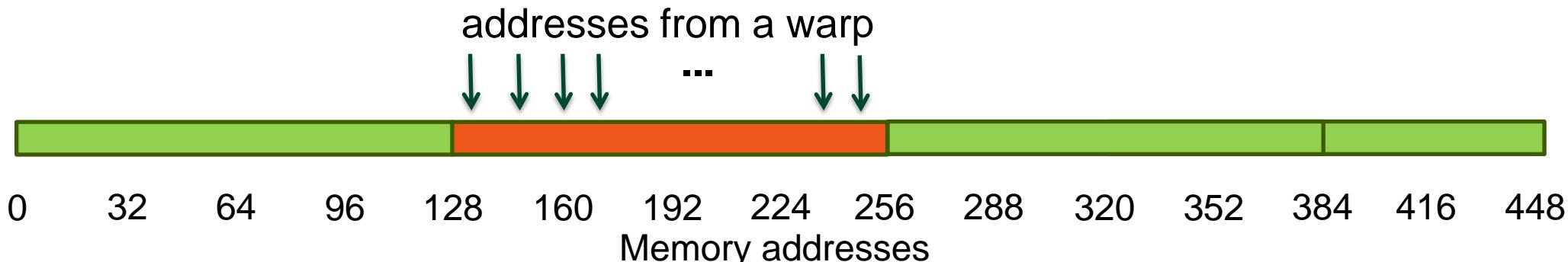
- Short answer: DON'T
- GPU caches are not intended for the same use as CPU caches
 - Smaller size (especially per thread), so not aimed at temporal reuse
 - Intended to smooth out some access patterns, help with spilled registers, etc.
- Don't try to block for L1/L2 like you would on CPU
 - You have 100s to 1,000s of run-time scheduled threads hitting the caches
 - If it is possible to block for L1 then block for SMEM
 - Same size, same bandwidth, hw will not evict behind your back

Fermi Global Memory Operations

- **Memory operations are executed per warp**
 - 32 threads in a warp provide memory addresses
 - Hardware determines into which lines those addresses fall
- **Two types of loads:**
 - Caching (default mode)
 - Attempts to hit in L1, then L2, then GMEM
 - Load granularity is **128-byte line**
 - Non-caching
 - Compile with **`-Xptxas -dlcm=cg`** option to nvcc
 - Attempts to hit in L2, then GMEM
 - Does not hit in L1, invalidates the line if it's in L1 already
 - Load granularity is **32-bytes**
- **Stores:**
 - Invalidate L1, go at least to L2, 32-byte granularity

Caching Load

- **Scenario:**
 - Warp requests 32 aligned, consecutive 4-byte words
- **Addresses fall within 1 cache-line**
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: **100%**



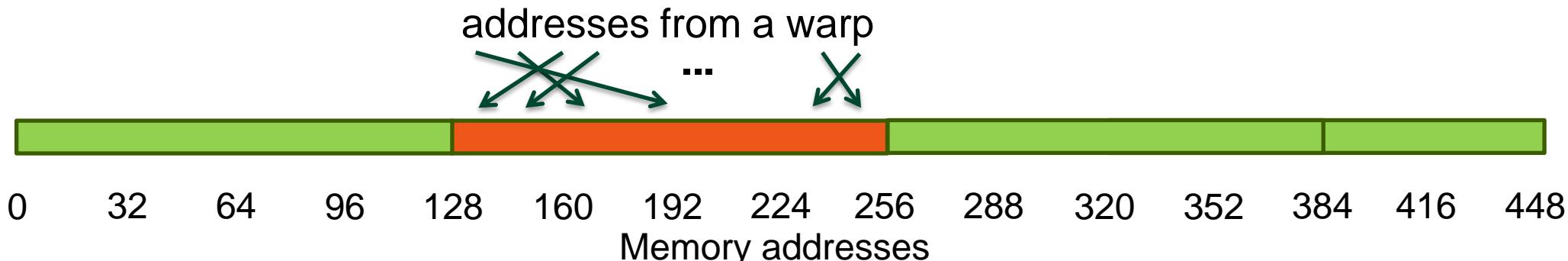
Non-caching Load

- **Scenario:**
 - Warp requests 32 aligned, consecutive 4-byte words
- **Addresses fall within 4 segments**
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: **100%**



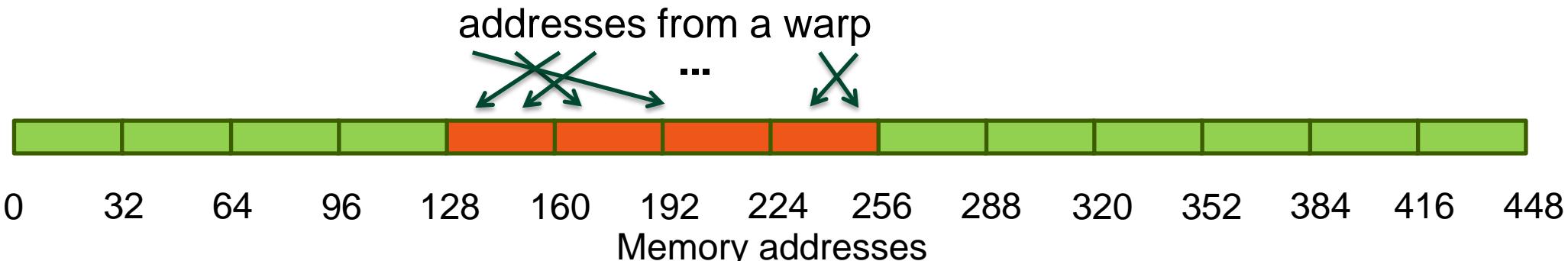
Caching Load

- **Scenario:**
 - Warp requests 32 aligned, permuted 4-byte words
- **Addresses fall within 1 cache-line**
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: **100%**



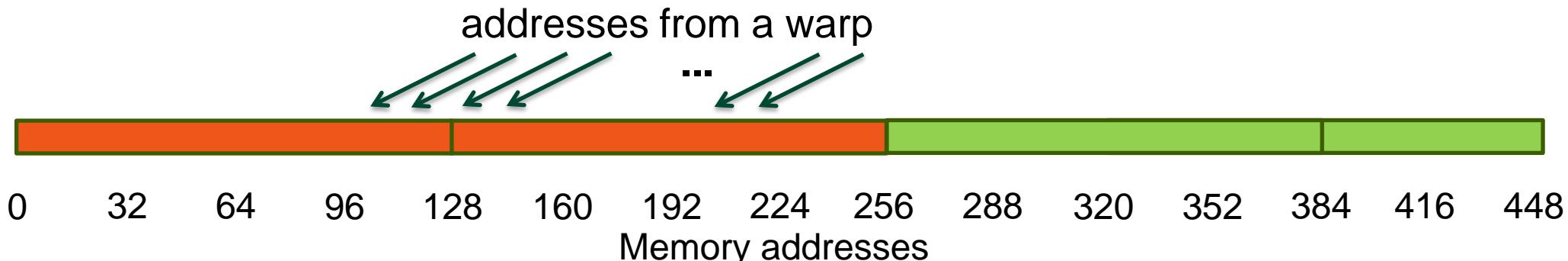
Non-caching Load

- **Scenario:**
 - Warp requests 32 aligned, permuted 4-byte words
- **Addresses fall within 4 segments**
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: **100%**



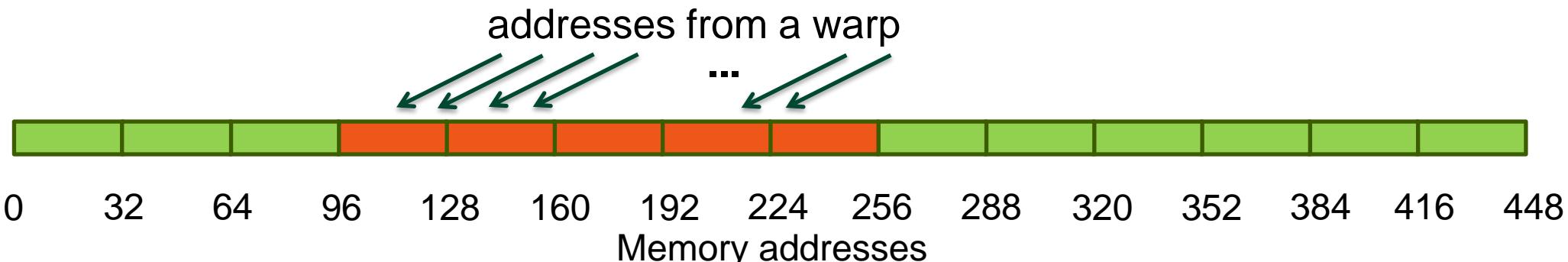
Caching Load

- **Scenario:**
 - Warp requests 32 misaligned, consecutive 4-byte words
- **Addresses fall within 2 cache-lines**
 - Warp needs 128 bytes
 - 256 bytes move across the bus on misses
 - Bus utilization: **50%**



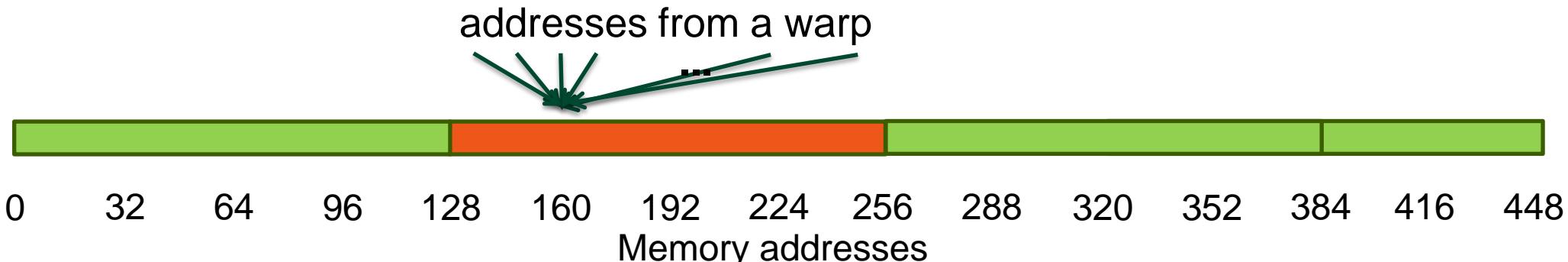
Non-caching Load

- **Scenario:**
 - Warp requests 32 misaligned, consecutive 4-byte words
- **Addresses fall within at most 5 segments**
 - Warp needs 128 bytes
 - At most 160 bytes move across the bus
 - Bus utilization: at **least 80%**
 - Some misaligned patterns will fall within 4 segments, so 100% utilization



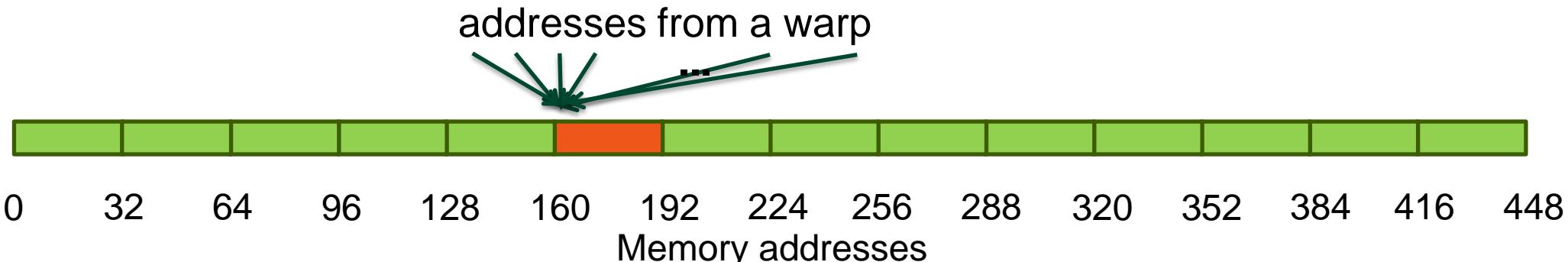
Caching Load

- **Scenario:**
 - All threads in a warp request the same 4-byte word
- **Addresses fall within a single cache-line**
 - Warp needs 4 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: **3.125%**



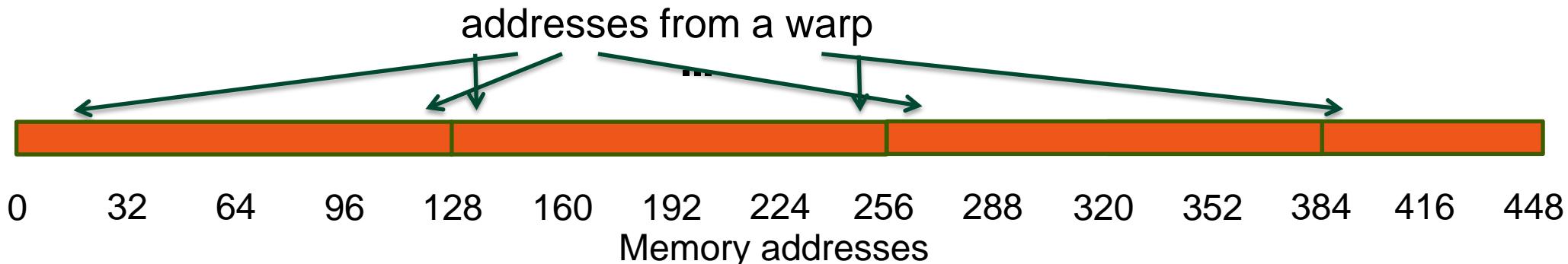
Non-caching Load

- **Scenario:**
 - All threads in a warp request the same 4-byte word
- **Addresses fall within a single segment**
 - Warp needs 4 bytes
 - 32 bytes move across the bus on a miss
 - Bus utilization: **12.5%**



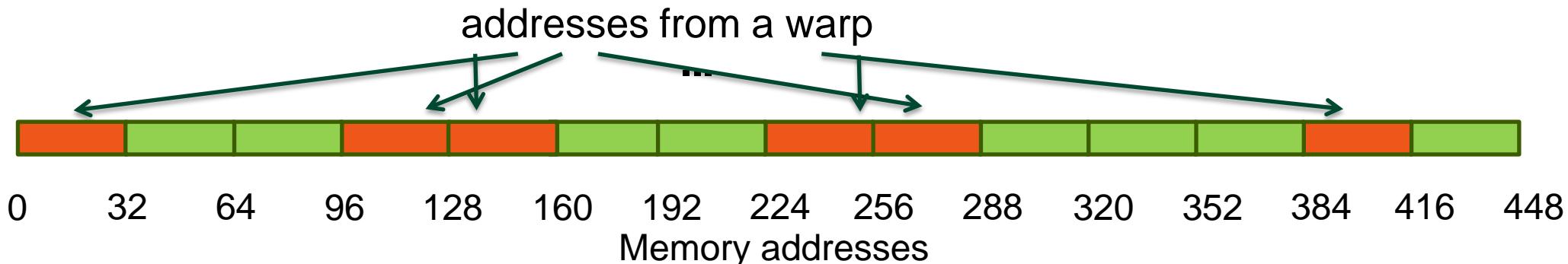
Caching Load

- **Scenario:**
 - Warp requests 32 scattered 4-byte words
- **Addresses fall within N cache-lines**
 - Warp needs 128 bytes
 - $N*128$ bytes move across the bus on a miss
 - Bus utilization: $128 / (N*128)$



Non-caching Load

- **Scenario:**
 - Warp requests 32 scattered 4-byte words
- **Addresses fall within N segments**
 - Warp needs 128 bytes
 - $N*32$ bytes move across the bus on a miss
 - Bus utilization: $128 / (N*32)$ (4x higher than caching loads)



Load Caching and L1 Size

- **Non-caching loads can improve performance when:**
 - Loading scattered words or only a part of a warp issues a load
 - Benefit: memory transaction is smaller, so useful payload is a larger percentage
 - Loading halos, for example
 - Spilling registers (reduce line fighting with spillage)
- **Large L1 can improve perf when:**
 - Spilling registers (more lines in the cache -> fewer evictions)
 - Some misaligned, strided access patterns
 - **16-KB L1 / 48-KB smem OR 48-KB L1 / 16-KB smem**
 - CUDA call, can be set for the app or per-kernel
- **How to use:**
 - Just try a **2x2** experiment matrix: **{caching, non-caching} x {48-L1, 16-L1}**
 - Keep the best combination - same as you would with any HW managed cache, including CPUs

Memory Throughput Analysis

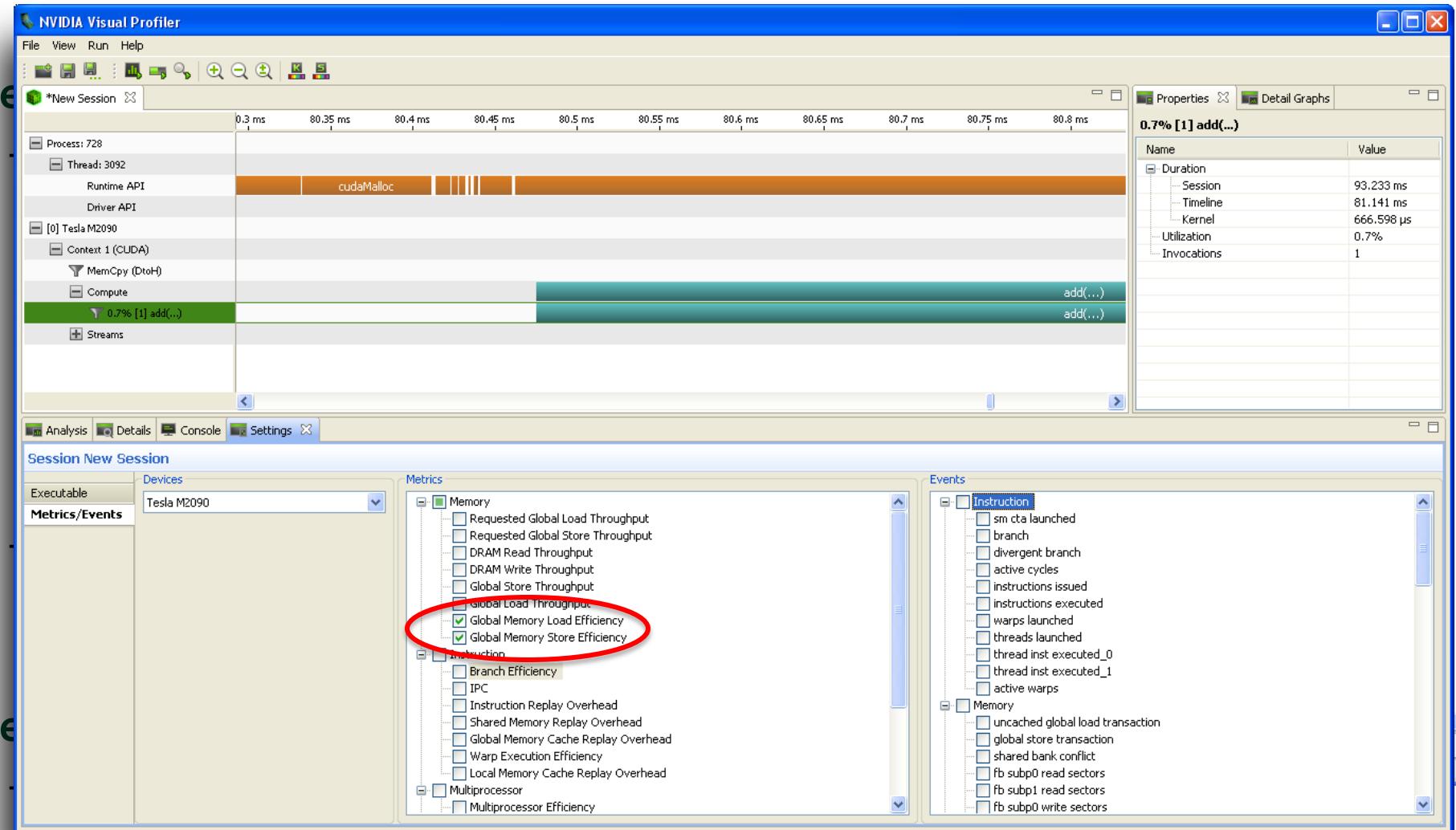
- **Throughput:**
 - From **app** point of view: count bytes requested by the application
 - From **HW** point of view: count bytes moved by the hardware
 - The two can be different
 - Scattered/misaligned pattern: not all transaction bytes are utilized
 - Broadcast: the same small transaction serves many requests
- **Two aspects to analyze for performance impact:**
 - Address pattern
 - Number of concurrent accesses in flight

Memory Throughput Analysis

- **Determining that access pattern is problematic:**
 - Use the profiler to check load and store efficiency
 - Efficiency = bytes requested by the app / bytes transferred
 - Will slow down code substantially:
 - Bytes-requested is measured by adding code for every load/store
 - So, you may want to run for smaller data set
 - If efficiency isn't 100%, then bandwidth is being wasted
 - Below 50% certainly means scattered accesses
 - Above 50% could be scattered or misaligned
 - Derive app-requested bytes yourself
 - Still use profiler to get HW throughput (fast, no sw modification)
- **Determining that the number of concurrent accesses is insufficient:**
 - Throughput from HW point of view is much lower than theoretical

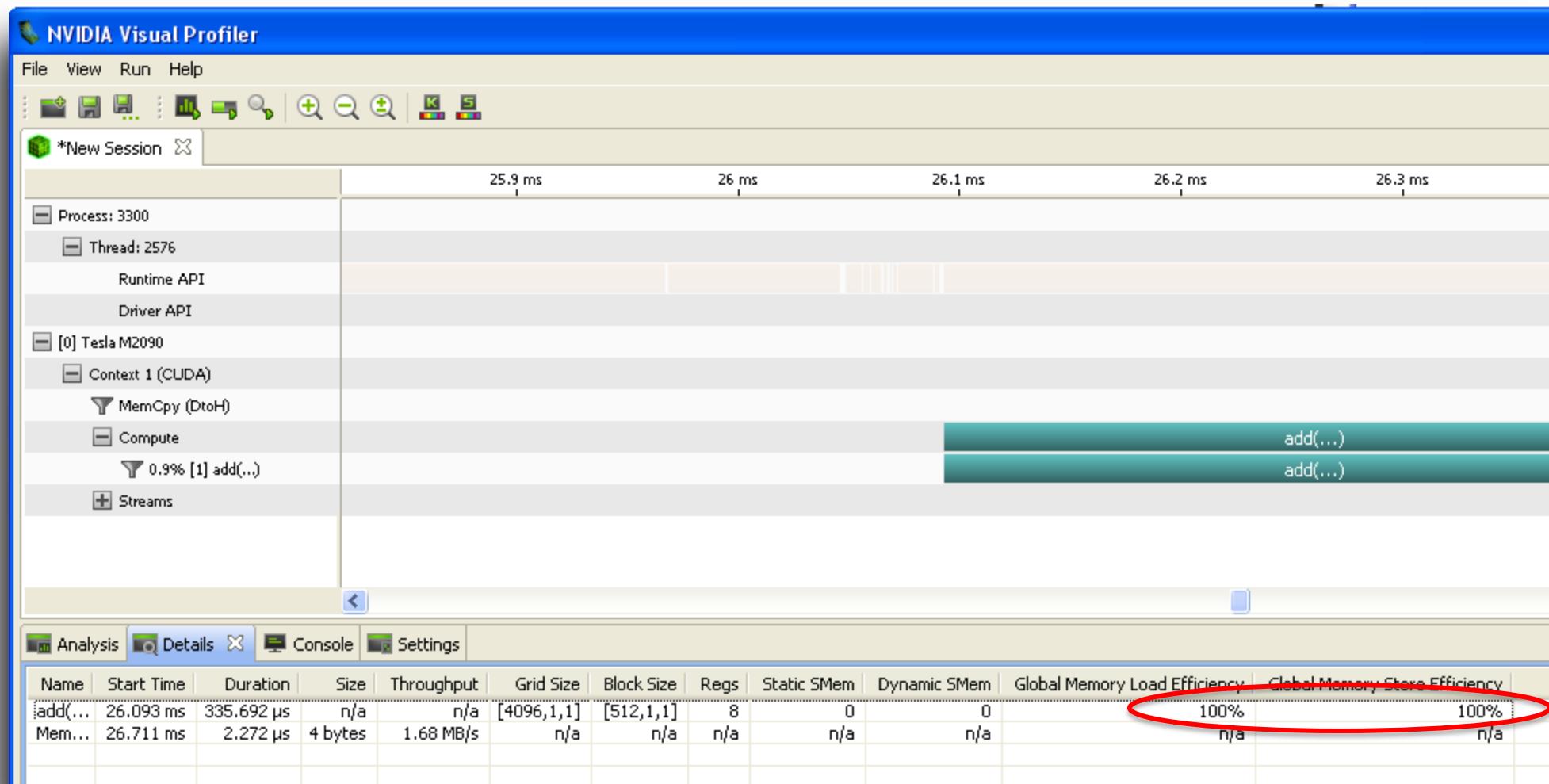
Memory Throughput Analysis

- De



- De

Memory Throughput Analysis



Optimization: Address Pattern

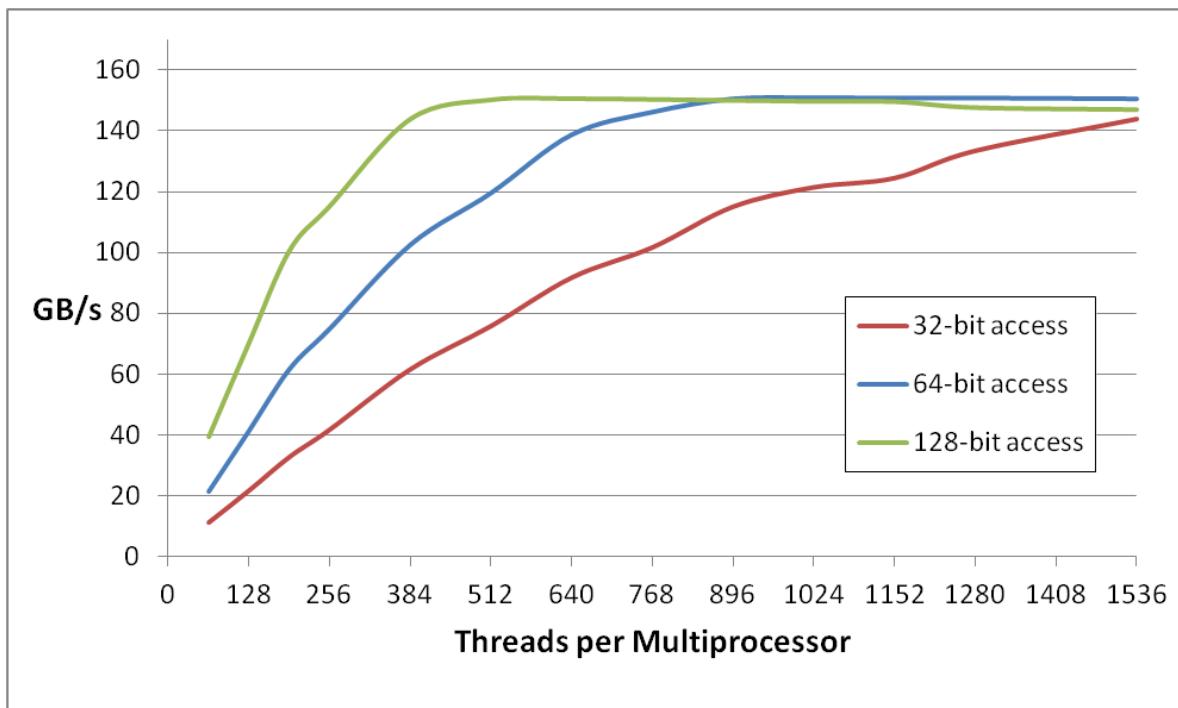
- **Coalesce the address pattern**
 - Minimize the lines that a warp addresses in a given access
 - **128-byte lines** for caching loads, **32-byte segments** for non-caching loads, stores
 - Use structure-of-arrays storage (as opposed to array of structures)
 - You have to do this for any architecture, including CPUs
 - Pad multi-dimensional structures so that accesses by warps are aligned on line boundaries
- **Try using non-caching loads**
 - Smaller transactions (**32B** instead of **128B**)
 - more efficient for scattered or partially-filled patterns
- **Try fetching data from texture**
 - Smaller transactions and different caching
 - Cache not polluted by other gmem loads

Optimization: Access Concurrency

- **Have enough concurrent accesses to saturate the bus**
 - Need $(\text{mem_latency}) \times (\text{bandwidth})$ bytes in flight (Little's law)
- **Ways to increase concurrent accesses:**
 - Increase occupancy (run more threads concurrently)
 - Adjust threadblock dimensions
 - To maximize occupancy at given register and smem requirements
 - Reduce register count (-maxrregcount option, or `__launch_bounds__`)
 - Modify code to process several elements per thread

Some Experimental Data

- Increment a 64M element array
 - Two accesses per thread (load then store, but they are dependent)
 - Thus, each warp (32 threads) has one outstanding transaction at a time
- Tesla M2090, ECC off, theoretical bandwidth: 177 GB/s



Several independent smaller accesses have the same effect as one larger one.

For example:

Four 32-bit \approx one 128-bit

Summary: GMEM Optimization

- **Strive for perfect coalescing per warp**
 - Align starting address (may require padding)
 - A warp should access within a contiguous region
 - Structure of Arrays is better than Array of Structures
- **Have enough concurrent accesses to saturate the bus**
 - Launch enough threads to maximize throughput
 - Latency is hidden by switching threads (warps)
 - If needed, process several elements per thread
 - More concurrent loads/stores
- **Try L1 and caching configurations to see which one works best**
 - Caching vs non-caching loads (compiler option)
 - 16KB vs 48KB L1 (CUDA call)

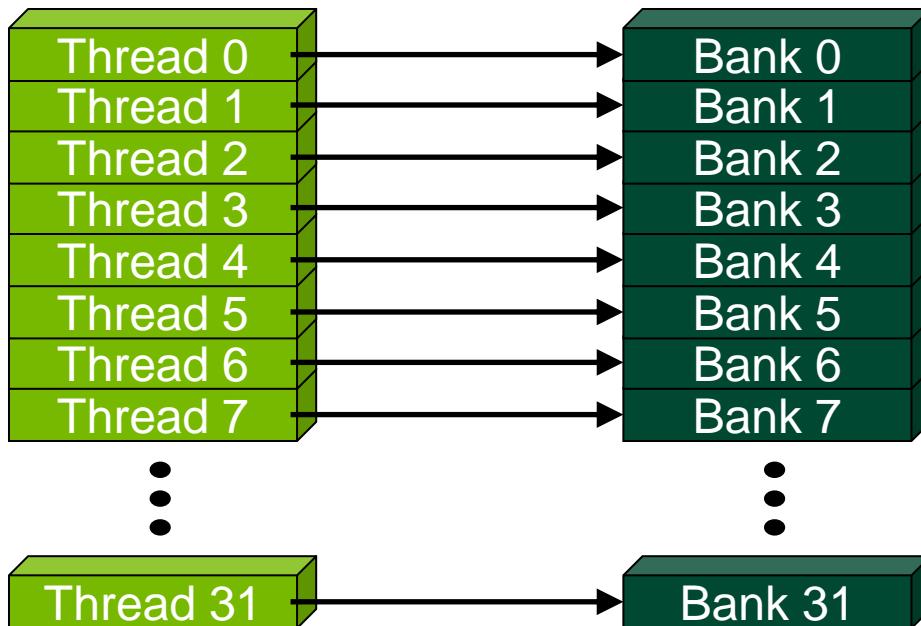
Shared Memory Optimization

Shared Memory

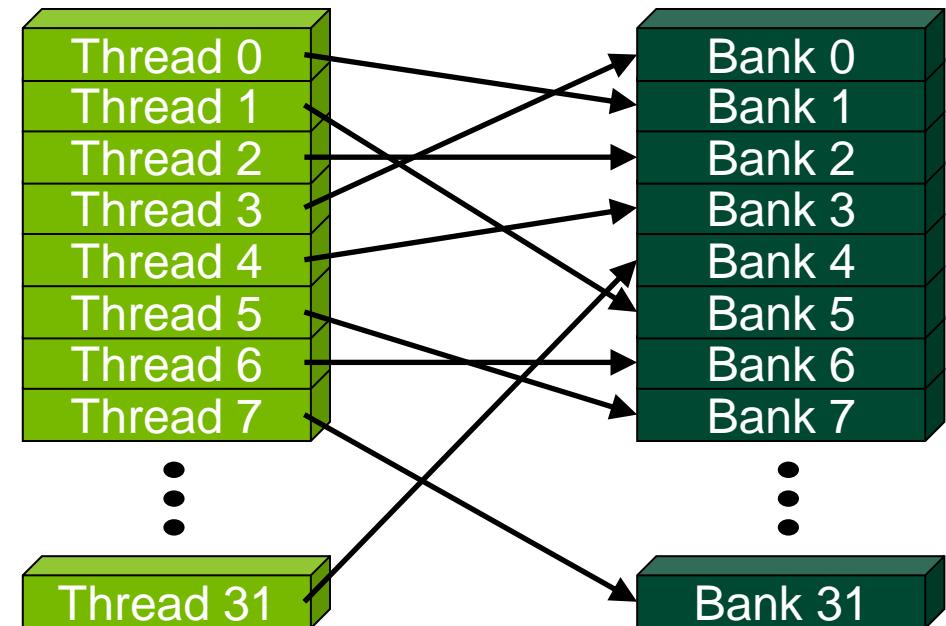
- **Uses:**
 - Inter-thread communication within a block
 - Cache data to reduce redundant global memory accesses
 - Use it to improve global memory access patterns
- **Fermi organization:**
 - 32 banks, 4-byte wide banks
 - Successive 4-byte words belong to different banks
- **Performance:**
 - 4 bytes per bank per 2 clocks per multiprocessor: 1.3 TB/s on M2090
 - smem accesses are issued per 32 threads (warp)
 - **serialization:** if n threads in a warp access different 4-byte words in the same bank, n accesses are executed serially
 - **multicast:** n threads access the same word in one fetch
 - Could be different bytes within the same word

Bank Addressing Examples

- No Bank Conflicts

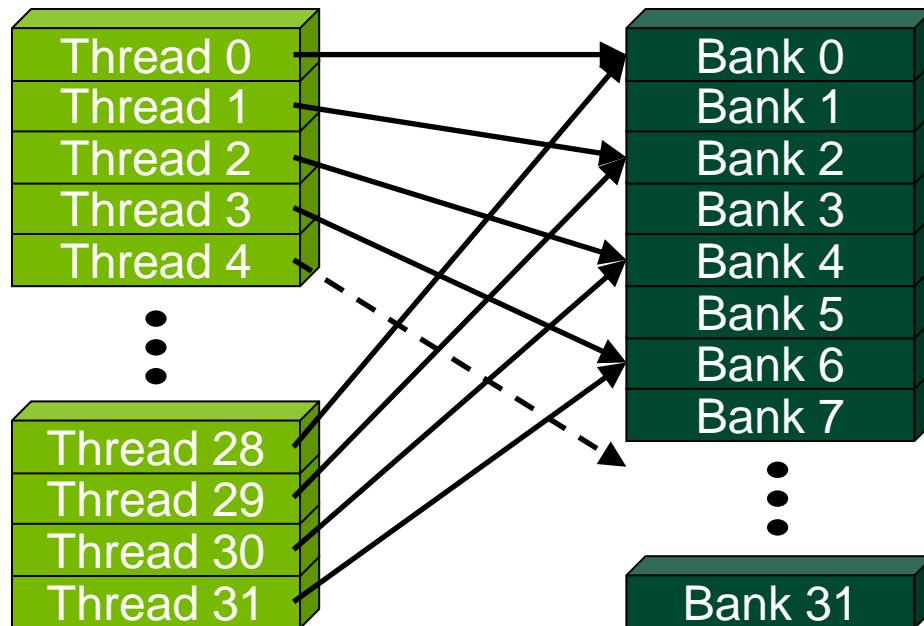


- No Bank Conflicts

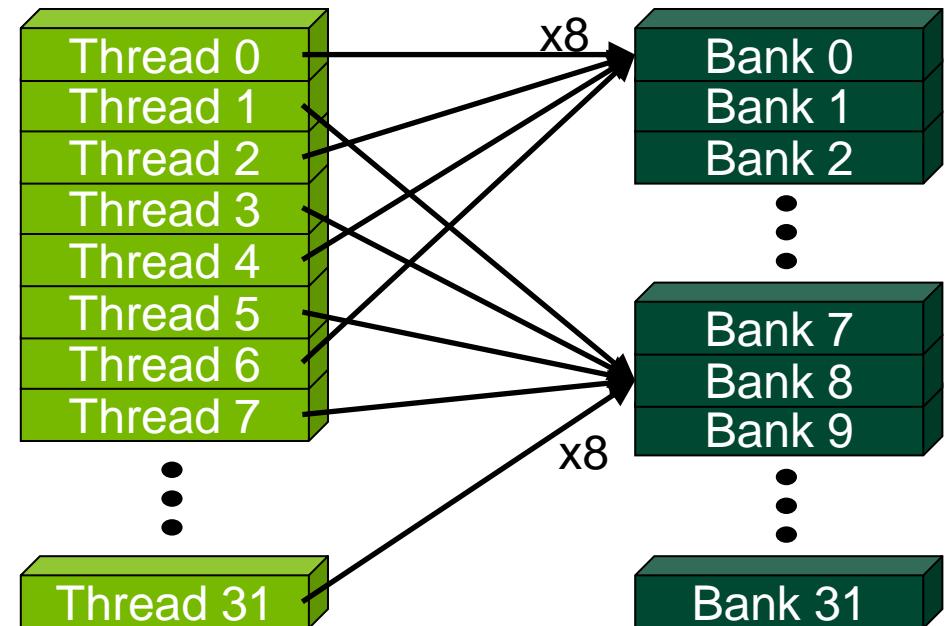


Bank Addressing Examples

- 2-way Bank Conflicts



- 8-way Bank Conflicts

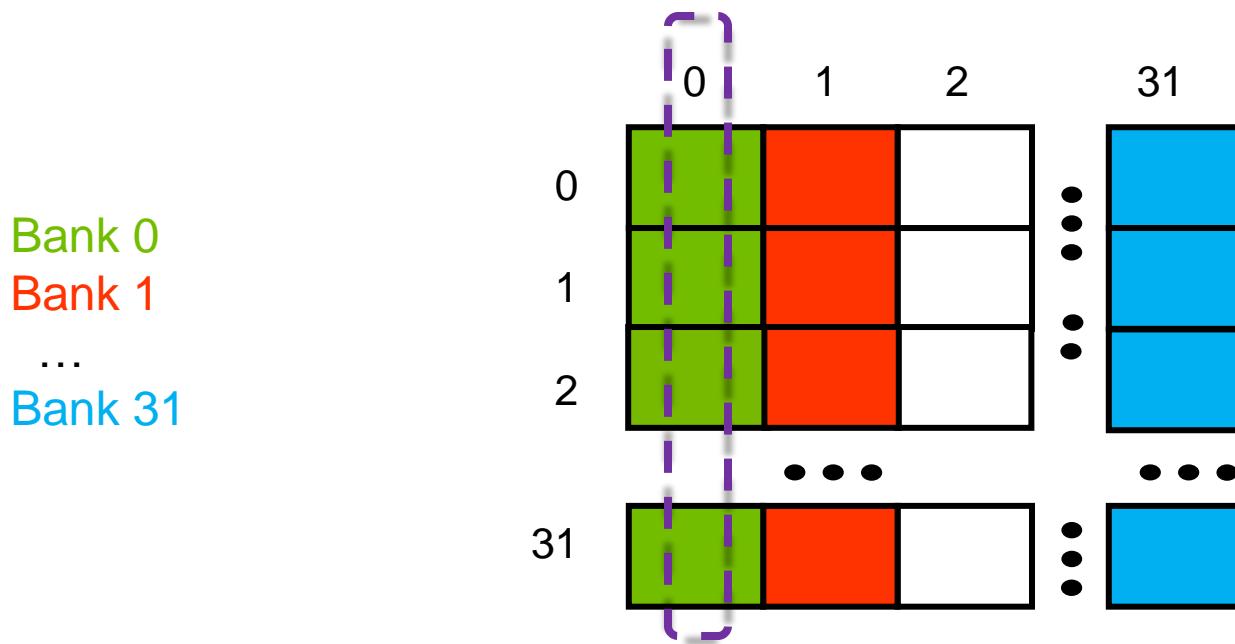


Profiling SMEM Bank Conflicts

- **Find out whether:**
 - Bank conflicts are occurring
 - Bank conflicts significantly impact performance
 - No need to optimize if they don't
- **Impact on performance is significant if:**
 - Kernel is limited by instruction throughput
 - Shared memory bank conflicts are a significant percentage of instructions issued
- **Use the profiler to get:**
 - Bank conflict count, instructions-issued count
 - Currently bank-conflicts get overcounted for accesses greater than 32-bit words:
 - Divide by 2 for 64-bit accesses (double, float2, etc.)
 - Divide by 4 for 128-bit accesses (float4, etc.)

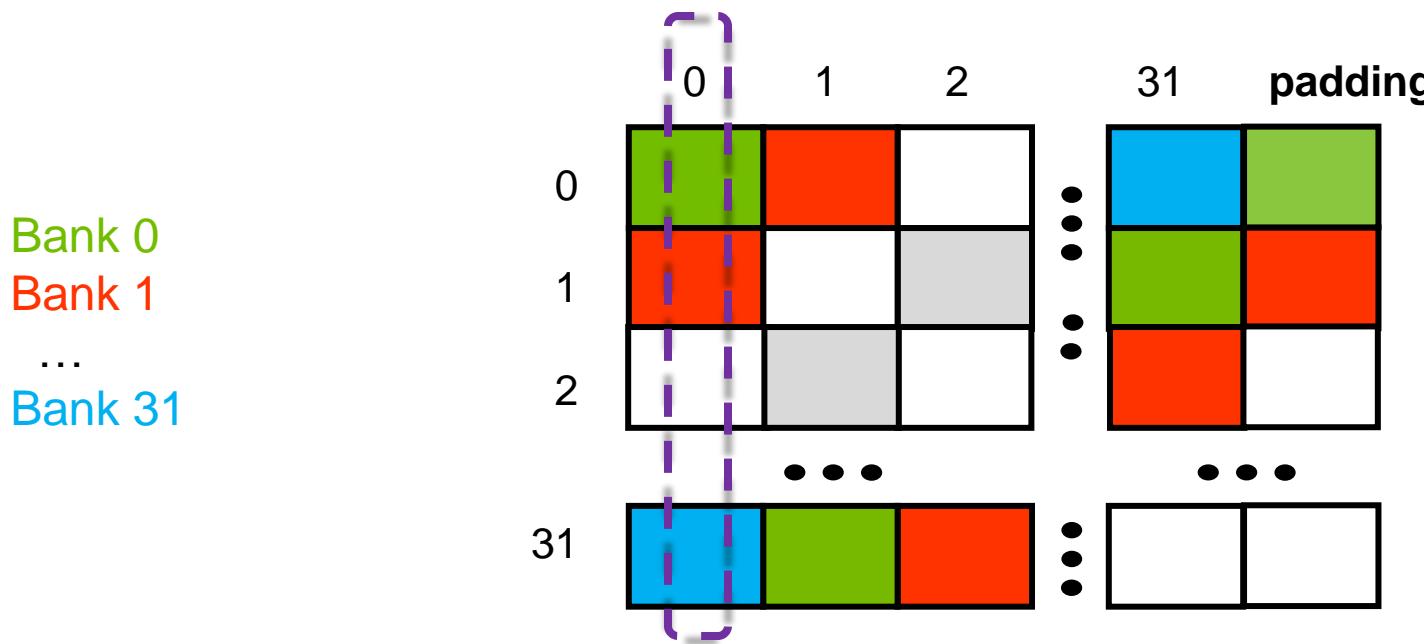
Shared Memory: Avoiding Bank Conflicts

- 32x32 SMEM array
- Warp accesses a column:
 - 32-way bank conflicts (threads in a warp access the same bank)



Shared Memory: Avoiding Bank Conflicts

- Add a column for padding:
 - 32x33 SMEM array
- Warp accesses a column:
 - 32 different banks, no bank conflicts



Case Study: SMEM Bank Conflicts

- One of CAM-HOMME kernels (climate simulation), fp64
- Profiler values:
 - Instructions:Byte ratio, reported by profiler: 4
 - Suggests kernel is instruction limited (even before adjusting for fp64 throughput)
 - Instruction counts
 - Executed / issued: 2,406,426 / 2,756,140
 - Difference: 349,714 (12.7% of instructions issued were “replays”)
 - SMEM instructions:
 - Load + store: 421,785 + 95,172 = 516,957
 - Bank conflicts: 674,856 (really 337,428 because of double-counting for fp64)
 - So, SMEM bank conflicts make up 12.2% of all instructions (337,428 / 2,756,140)
- Solution: pad shared memory
 - Performance increased by ~15%

Texture and Constant Data

Constant and Texture Data

- **Constants:**
 - `__constant__` qualifier in declarations
 - Up to **64KB**
 - Ideal when the same address is read by all threads in a warp (FD coefficients, etc.)
 - Throughput is 4B per SM per clock
- **Textures:**
 - Dedicated hardware for:
 - Out-of-bounds index handling (clamp or wrap-around)
 - Optional interpolation (think: using fp indices for arrays)
 - Linear, bilinear, trilinear
 - Optional format conversion
 - {char, short, int} -> float
- **Operation:**
 - Both textures and constants reside in global memory
 - Both are read via dedicated caches

Instruction Throughput and Optimization

Kernel Execution

- **Threadblocks are assigned to SMs**
 - Done at run-time, so don't assume any particular order
 - Once a threadblock is assigned to an SM, it stays resident until all its threads complete
 - It's not migrated to another SM
 - It's not swapped out for another threadblock
- **Instructions are issued/executed per warp**
 - Warp = 32 consecutive threads
 - Think of it as a “vector” of 32 threads
 - The same instruction is issued to the entire warp
- **Scheduling**
 - Warps are scheduled at run-time
 - Hardware picks from warps that have an instruction ready to execute
 - Ready = all arguments are ready
 - Instruction latency is hidden by executing other warps

Control Flow

- **Divergent branches:**
 - Threads within a single warp take different paths
 - `if-else`, ...
 - Different execution paths within a warp are serialized
- **Different warps can execute different code with no impact on performance**
- **Avoid diverging within a warp**
 - Example with divergence:
 - `if (threadIdx.x > 2) {...} else {...}`
 - Branch granularity < warp size
 - Example without divergence:
 - `if (threadIdx.x / WARP_SIZE > 2) {...} else {...}`
 - Branch granularity is a whole multiple of warp size

Possible Performance Limiting Factors

- **Raw instruction throughput**
 - Know the kernel instruction mix
 - fp32, fp64, int, mem, transcendentals, etc. have different throughputs
 - Refer to the CUDA Programming Guide / Best Practices Guide
 - Can examine assembly: use `cuobjdump` tool provided with CUDA toolkit
 - A lot of divergence can “waste” instructions
- **Instruction serialization**
 - Occurs when threads in a warp issue the same instruction in sequence
 - As opposed to the entire warp issuing the instruction at once
 - Think of it as “replaying” the same instruction for different threads in a warp
 - Some causes:
 - Shared memory bank conflicts
 - Constant memory bank conflicts

Instruction Throughput: Analysis

- **Compare achieved instruction throughput to HW capabilities**
 - Profiler reports achieved throughput as IPC (instructions per clock)
 - As percentage of theoretical peak for pre-Fermi GPUs
 - Peak instruction throughput is documented in the Programming Guide
 - Profiler also provides peak fp32 throughput for reference (doesn't take your instruction mix into consideration)
- **Check for serialization**
 - Number of replays due to serialization = difference between `instructions_issued` and `instructions_executed` counters
 - Profiler reports `% of serialization` metric, additional counters for smem bank conflicts
 - A concern only if code is instruction-bound and serialization percentage is high
- **Warp divergence**
 - Profiler counters: `divergent_branch`, `branch`
 - Compare the two to see what percentage diverges
 - However, this only counts the branches, not the rest of serialized instructions

Instruction Throughput: Optimization

- Use **intrinsics where possible** (`__sin()`, `__sincos()`, `__exp()`, etc.)
 - Available for a number of math.h functions
 - 2-3 bits lower precision, much higher throughput
 - Refer to the CUDA Programming Guide for details
 - Often a single HW instruction, whereas a non-intrinsic is a SW sequence
- **Additional compiler flags that also help (select GT200-level precision):**
 - `-ftz=true` : flush denormals to 0
 - `-prec-div=false` : faster fp division instruction sequence (some precision loss)
 - `-prec-sqrt=false` : faster fp sqrt instruction sequence (some precision loss)
- **Make sure you do fp64 arithmetic only where you mean it:**
 - fp64 throughput is lower than fp32
 - fp literals without an “f” suffix (34.7) are interpreted as fp64 per C standard

Serialization: Optimization

- **Shared memory bank conflicts:**
 - Covered earlier in this presentation
- **Constant memory bank conflicts:**
 - Ensure that all threads in a warp access the same `__constant__` value
 - If many different values will be needed per warp:
 - Use gmem or smem instead
- **Warp serialization:**
 - Try grouping threads that take the same path
 - Rearrange the data, pre-process the data
 - Rearrange how threads index data (may affect memory perf)

Instruction Throughput: Summary

- **Analyze:**
 - Check achieved instruction throughput
 - Compare to HW peak (but keep instruction mix in mind)
 - Check percentage of instructions due to serialization
- **Optimizations:**
 - Intrinsics, compiler options for expensive operations
 - Group threads that are likely to follow same execution path (minimize warp divergence)
 - Avoid SMEM bank conflicts (pad, rearrange data)

Latency Hiding

Latency: Analysis

- **Suspect unhidden latency if:**
 - Neither memory nor instruction throughput is close to HW theoretical rates
 - Poor overlap between mem and math
 - Full-kernel time is significantly larger than $\max\{\text{mem-only}, \text{math-only}\}$
 - Refer to SC10 or GTC10 Analysis-Driven Optimization slides for details
- **Two possible causes:**
 - Insufficient concurrent threads per multiprocessor to hide latency
 - Occupancy too low
 - Too few threads in kernel launch to load the GPU
 - elapsed time doesn't change if problem size is increased (and with it the number of blocks/threads)
 - Too few concurrent threadblocks per SM when using `__syncthreads()`
 - `__syncthreads()` can prevent overlap between math and mem within the same threadblock

Simplified View of Latency and Syncs

Memory-only time
Math-only time

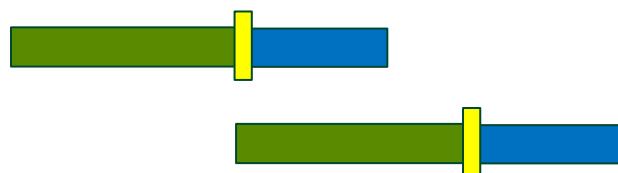
Kernel where most math cannot be executed until all data is loaded by the threadblock

Full-kernel time, one large threadblock per SM

time →

Simplified View of Latency and Syncs

Kernel where most math cannot be executed until all data is loaded by the threadblock



time →

Latency: Optimization

- **Insufficient threads or workload:**
 - Increase the level of parallelism (more threads)
 - If occupancy is already high but latency is not being hidden:
 - Process several output elements per thread - gives more independent memory and arithmetic instructions (which get pipelined)
- **Barriers:**
 - Can assess impact on perf by commenting out `__syncthreads()`
 - Incorrect result, but gives upper bound on improvement
 - Try running several smaller threadblocks
 - Think of it as “piped” threadblock execution
 - In some cases that costs extra bandwidth due to halos
- **Check out Vasily Volkov’s talk 2238 at GTC 2010 for a detailed treatment:**
 - “Better Performance at Lower Latency”

Summary

- **Keep the 3 requirements for max performance in mind:**
 - Sufficient parallelism
 - Coalesced memory access
 - Coherent (vector) execution within warps
- **Determine what limits kernel performance**
 - Memory, arithmetic, latency
- **Optimize in the order of limiter severity**
 - Use the profiler to determine performance impact first
 - Some code modifications help here too

Additional Resources

- **Fundamental Optimizations / Analysis-Driven Optimization**
 - More detailed treatment of this information, more cases studies
 - SC10: http://www.nvidia.com/object/sc10_cuda_tutorial.html
 - GTC10 (includes video recordings):
 - <http://www.gputechconf.com/page/gtc-on-demand.html#2011>
 - <http://www.gputechconf.com/page/gtc-on-demand.html#2012>
- **CUDA Best Practices Guide / CUDA Programming Guide**
 - Included in the docs of any CUDA toolkit
 - All optimization materials apply to OpenCL and other programming models
- **CUDA Webinars:**
 - <http://developer.nvidia.com/gpu-computing-webinars>
 - Shorter, more focused presentations (recorded video of past talks)
 - Memory optimization, local memory and register spilling, etc.

Questions?