Performance Optimization Supercomputing 2011

Paulius Micikevicius| NVIDIA November 14, 2011

© NVIDIA 2011

Requirements for Maximum Performance

© NVIDIA 2011

Requirements for Maximum Performance

» Have sufficient parallelism
— At least a few 1,000 threads per function

» Coalesced memory access
— By threads in the same “thread-vector”

* Coherent execution
— By threads in the same “thread-vector”

© NVIDIA 2011

Amount of Parallelism

GPUs issue instructions in order
— Issue stalls when instruction arguments are not ready
GPUs switch between threads to hide latency

— Context switch is free: thread state is partitioned (large register file), not
stored/restored

Conclusion: need enough threads to hide math latency and to
saturate the memory bus

— Independent instructions (ILP) within a thread also help
Very rough rule of thumb:

— Need ~512 threads per SM

— So, at least a few 1,000 threads per GPU

© NVIDIA 2011

Control Flow

 Single-Instruction Multiple-Threads (SIMT) model
— Asingle instruction is issued for a warp (thread-vector) at a time
— NVIDIA GPU: warp = a vector of 32 threads

 Compare to SIMD:
— SIMD requires vector code in each thread

— SIMT allows you to write scalar code per thread
» Vectorization is guaranteed by hardware

 Note:

— All contemporary processors (CPUs and GPUs) are built by
aggregating vector processing unit

© NVIDIA 2011

Control Flow

it (...)
{

/l then-clause

}

else

{

/|l else-clause

}

instructions

\ 4

© NVIDIA 2011

instructions / time

Execution within warps is coherent

O 1 2 3 30 31 32 33 34 35 62 63

i llll ll
L L]
Wi

Y
Warp Warp
(“vector” of threads) (“vector” of threads)

Execution diverges within a warp

3 30 31 32 33 34 35

T
Rien i
AN

3

Memory Access

» Addresses from a warp (“thread-vector”) are
converted into line requests

— line sizes: 32B and 128B
— Goal is to maximally utilize the bytes in these lines

addresses from a warp are within cache line

VLib

0 32 64 96 128 160 192 224 256 288 320 352 384
Memory addresses

© NVIDIA 2011

© NVIDIA 2011

addresses from a warp are within cache line

0

32

32

64

64

96

96

128 160 192 224 256
Memory addresses

288 320 352 384

scattered addresses from a warp

iﬁ %Ei -

128 160 192 224 256
Memory addresses

288 320 352 384 416

10

Performance Optimization

© NVIDIA 2011

11

© NVIDIA 2011

Performance Optimization Process

« Use appropriate performance metric for each kernel

— For example, Gflops/s don’t make sense for a bandwidth-bound kernel
* Determine what limits kernel performance

— Memory throughput

— Instruction throughput

— Latency

— Combination of the above
« Address the limiters in the order of importance

— Determine how close to the HW limits the resource is being used

— Analyze for possible inefficiencies

— Apply optimizations

» Often these will just fall out from how HW operates

12

© NVIDIA 2011

3 Ways to Assess Performance Limiters

 Algorithmic
— Based on algorithm’s memory and arithmetic requirements

— Least accurate: undercounts instructions and potentially memory
accesses

 Profiler
— Based on profiler-collected memory and instruction counters

— More accurate, but doesn’t account well for overlapped memory and
arithmetic

 Code modification

— Based on source modified to measure memory-only and arithmetic-only
times

— Most accurate, however cannot be applied to all codes

13

© NVIDIA 2011

Things to Know About Your GPU

* Theoretical memory throughput

— For example, Tesla M2090 theory is 177 GB/s
* Theoretical instruction throughput

— Varies by instruction type

» refer to the CUDA Programming Guide (Section 5.4.1) for details

— Tesla M2090 theory is 665 Ginstr/s for fp32 instructions
» Half that for fp64
* |I’m counting instructions per thread

* Rough “balanced” instruction:byte ratio

— For example, 3.76:1 from above (fp32 instr : bytes)
» Higher than this will usually mean instruction-bound code
» Lower than this will usually mean memory-bound code

14

© NVIDIA 2011

Another Way to Use the Profiler

 VisualProfiler reports instruction and memory throughputs
— IPC (instructions per clock) for instructions
— GB/s achieved for memory (and L2)
« Compare those with the theory for the HW
— Profiler will also report the theoretical best
Though for IPC it assumes fp32 instructions, it DOES NOT take instruction mix into consideration
— If one of the metrics is close to the hw peak, you’re likely limited by it
— If neither metric is close to the peak, then unhidden latency is likely an issue
“close” is approximate, I’d say 70% of theory or better
« Example: vector add
— IPC: 0.55 out of 2.0
— Memory throughput: 130 GB/s out of 177 GB/s
— Conclusion: memory bound

15

Notes on the Profiler

Most counters are reported per Streaming Multiprocessor (SM)
— Not entire GPU
— Exceptions: L2 and DRAM counters

A single run can collect a few counters

— Multiple runs are needed when profiling more counters
» Done automatically by the Visual Profiler
* Have to be done manually using command-line profiler

Counter values may not be exactly the same for repeated runs
— Threadblocks and warps are scheduled at run-time
— S0, “two counters being equal” usually means “two counters within a small delta”

Refer to the profiler documentation for more information

16
© NVIDIA 2011

Global Memory Optimization

17

Fermi Memory Hierarchy Review

SM-0 SM-1 SM-N
Registers Registers Registers
L1 SMEM L1 SMEM L1 SMEM
A A
L2

!

Global Memory

© NVIDIA 2011

Fermi Memory Hierarchy Review

* Local storage
— Each thread has own local storage
— Mostly registers (managed by the compiler)
« Shared memory / L1
— Program configurable: 16KB shared / 48 KB L1 OR 48KB shared / 16KB L1
— Shared memory is accessible by the threads in the same threadblock
— Low latency
— Very high throughput (1.33 TB/s aggregate on Tesla M2090)
« L2
— All accesses to global memory go through L2, including copies to/from CPU host
— 768 KB on Tesla M2090
* Global memory
— Accessible by all threads as well as host (CPU)
— Higher latency (400-800 cycles)
— Throughput: 177 GB/s on Tesla M2090

© NVIDIA 2011

Programming for L1 and L2

 Short answer: DON’T
 GPU caches are not intended for the same use as CPU caches
— Smaller size (especially per thread), so not aimed at temporal reuse

— Intended to smooth out some access patterns, help with spilled
registers, etc.

* Don’t try to block for L1/L2 like you would on CPU

— Youhhave 100s to 1,000s of run-time scheduled threads hitting the
caches

— If it is possible to block for L1 then block for SMEM

» Same size, same bandwidth, hw will not evict behind your back

© NVIDIA 2011

© NVIDIA 2011

Fermi Global Memory Operations

 Memory operations are executed per warp
— 32 threads in a warp provide memory addresses
— Hardware determines into which lines those addresses fall

« Two types of loads:
— Caching (default mode)
» Attempts to hit in L1, then L2, then GMEM
» Load granularity is 128-byte line
— Non-caching
« Compile with -Xptxas -dlcm=cg option to nvcc
» Attempts to hit in L2, then GMEM
— Does not hit in L1, invalidates the line if it’s in L1 already

* Load granularity is 32-bytes

 Stores:
— Invalidate L1, go at least to L2, 32-byte granularity

Caching Load

« Scenario:

— Warp requests 32 aligned, consecutive 4-byte words
» Addresses fall within 1 cache-line

— Warp needs 128 bytes

— 128 bytes move across the bus on a miss

— Bus utilization: 100%

addresses from a warp

RRI L

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA 2011

Non-caching Load

« Scenario:

— Warp requests 32 aligned, consecutive 4-byte words
» Addresses fall within 4 segments

— Warp needs 128 bytes

— 128 bytes move across the bus on a miss

— Bus utilization: 100%

addresses from a warp

RRI L

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA 2011

Caching Load

« Scenario:

— Warp requests 32 aligned, permuted 4-byte words
» Addresses fall within 1 cache-line

— Warp needs 128 bytes

— 128 bytes move across the bus on a miss

— Bus utilization: 100%

addresses from a warp
I

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA 2011

Non-caching Load

« Scenario:

— Warp requests 32 aligned, permuted 4-byte words
» Addresses fall within 4 segments

— Warp needs 128 bytes

— 128 bytes move across the bus on a miss

— Bus utilization: 100%

addresses from a warp
[T T T 1

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA 2011

Caching Load

« Scenario:

— Warp requests 32 misaligned, consecutive 4-byte words
» Addresses fall within 2 cache-lines

— Warp needs 128 bytes

— 256 bytes move across the bus on misses

— Bus utilization: 50%

addresses from a warp

[

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA 2011

Non-caching Load

« Scenario:

— Warp requests 32 misaligned, consecutive 4-byte words
» Addresses fall within at most 5 segments

— Warp needs 128 bytes

— At most 160 bytes move across the bus

— Bus utilization: at least 80%

» Some misaligned patterns will fall within 4 segments, so 100% utilization

addresses from a warp

[T T T T]

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA 2011

Caching Load

« Scenario:

— All threads in a warp request the same 4-byte word
» Addresses fall within a single cache-line

— Warp needs 4 bytes

— 128 bytes move across the bus on a miss

— Bus utilization: 3.125%

addresses from a warp

N ———

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA 2011

Non-caching Load

e Scenario:

— All threads in a warp request the same 4-byte word
» Addresses fall within a single segment

— Warp needs 4 bytes

— 32 bytes move across the bus on a miss

— Bus utilization: 12.5%

addresses from a warp

N ———

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA 2011

Caching Load

« Scenario:
— Warp requests 32 scattered 4-byte words
» Addresses fall within N cache-lines
— Warp needs 128 bytes
— N*128 bytes move across the bus on a miss
— Bus utilization: 128 / (N*128)

addresses from a warp
— r 1 0 0]

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA 2011

Non-caching Load

« Scenario:
— Warp requests 32 scattered 4-byte words
« Addresses fall within N segments
— Warp needs 128 bytes
— N*32 bytes move across the bus on a miss
— Bus utilization: 128 / (N*32) (4x higher than caching loads)

addresses from a warp
L 1 L
[[T 1 [T 1 /T 1]

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA 2011

Load Caching and L1 Size

* Non-caching loads can improve performance when:
— Loading scattered words or only a part of a warp issues a load
» Benefit: memory transaction is smaller, so useful payload is a larger percentage
« Loading halos, for example
— Spilling registers (reduce line fighting with spillage)
» Large L1 can improve perf when:
— Spilling registers (more lines in the cache -> fewer evictions)
— Some misaligned, strided access patterns
— 16-KB L1 / 48-KB smem OR 48-KB L1 / 16-KB smem
* CUDA call, can be set for the app or per-kernel
* How to use:

— Just try a 2x2 experiment matrix: {caching, non-caching} x {48-L1, 16-L1}
» Keep the best combination - same as you would with any HW managed cache, including CPUs

© NVIDIA 2011

© NVIDIA 2011

Memory Throughput Analysis

* Throughput:
— From app point of view: count bytes requested by the application
— From HW point of view: count bytes moved by the hardware

— The two can be different
» Scattered/misalighed pattern: not all transaction bytes are utilized
» Broadcast: the same small transaction serves many requests

« Two aspects to analyze for performance impact:
— Address pattern
— Number of concurrent accesses in flight

33

© NVIDIA 2011

Memory Throughput Analysis

« Determining that access pattern is problematic:

— Use the profiler to check load and store efficiency
« Efficiency = bytes requested by the app / bytes transferred

» Will slow down code substantially:
— Bytes-requested is measured by adding code for every load/store
— So, you may want to run for smaller data set

« |If efficiency isn’t 100%, then bandwidth is being wasted
— Below 50% certainly means scattered accesses
— Above 50% could be scattered or misaligned

— Derive app-requested bytes yourself
« Still use profiler to get HW throughput (fast, no sw modification)

* Determining that the number of concurrent accesses is insufficient:
— Throughput from HW point of view is much lower than theoretical

34

© NVIDIA 2011

emory Throughput Analysis

MVIDIA Visual Profiler
File Wiew Run Help

WEE BwS aQ@ BE

. © *New Session 52

= O || W8 Properties 52 | W@ Detai Graphs =0
0.3: ms 80.3|5 ms 80.1 s an 4’|5 s 80.5I ms SU.SIS ms SU.E: ms SU.BIS ms 30.?' ms an .?IS ms SD.SI ms 0.7% [1] add({...)
E Process: 722 Name Yalue
[=] Thread: 3032 = Duration
Runtirne APT Session 93,233 ms
Driver API Timeline 81141 ms
Kernel 666,598 ps
0] Tesla M2090
o Tesls Utiization 0.7%
[=] contest 1 foUDa) Invocations 1
F MemCpy (DroH)
IE‘ Compute
Skrearns
< >
W& Analysis ﬂ Details | B Console | B Settings 23 =08
Session New Session
Devices Metrics Events
Executable
- |Tesla 1Mz090 R | [=)-[E] Memary ~ -~
Metrics/Events [] Requested Global Load Throughput [sm cta launched
[[] Requested Global Stare Throughput [branch
[] DR&M Read Throughput [] divergent branch
[] DR&M Write Throughput [active cycles
[Global Stare Throughput [instructions issued -
= [Jinstructions executed
; Global Memary Load Efficiency [] warps launched
Global Memory Skare EFficiency [threads launched
i [Jthread inst executed_0
[] Branch EFfficiency [Jthread inst executed_1
Owrc [active warps
[Instruction Replay Overhead = =[] Memary
[] shared Memary Replay Overhead [uncached global load transaction
[Global Memary Cache Replay Overhead [global stare transaction
[] Warp Execution EFficiency [shared bank conflict
[Local Memary Cache Replay Qverhead [] fb subpi read sectars
(=[] Mulkiprocessor [fb subpi read sectars
[Multiprocessor Efficiency b [7] b subp0 write seckars b

35

© NVIDIA 2011

Memory Throughput Analysis

NVIDIA Visual Profiler,
File Wiew FRun Help

EHEHE B @ gd B8
B *tew Session 52

|E| Process: 3200
[=] Thread: 2576
Runtirme API
Driwer API
[=] [0] Tasla mzoan
[=] context 1 (U
SF MerCpy (DtoH)
IEl Carnpute
S 0.9% [1] add(,.)
Streams

S5
BE tnalysis | 6] Details 2% | B Console | B Settings

2k s
1

addr, ..}

Mame Stark Time Durakion Size Throughpuk Grid Size | Block Size

Regs

Skatic SMem

Crynamic SMern Global Memory

faddi e NS e A B s nja nja 4096 11T TTETE 1]
Mem... 26,711 ms 2272 s 4 bytes 1.68 ME/s nfa nfa

g
na

0
nfa

0
nSa

Load EFFic -
U I00%: 100%:
]

1L

nja

36

Optimization: Address Pattern

* Coalesce the address pattern
— Minimize the lines that a warp addresses in a given access
» 128-byte lines for caching loads, 32-byte segments for non-caching loads, stores

— Use structure-of-arrays storage (as opposed to array of structures)
» You have to do this for any architecture, including CPUs

— Pad multi-dimensional structures so that accesses by warps are aligned on line
boundaries

« Try using non-caching loads
— Smaller transactions (32B instead of 128B)
» more efficient for scattered or partially-filled patterns
* Try fetching data from texture
— Smaller transactions and different caching
— Cache not polluted by other gmem loads

37
© NVIDIA 2011

Optimization: Access Concurrency

» Have enough concurrent accesses to saturate the bus
— Need (mem_latency)x(bandwidth) bytes in flight (Little’s law)

* Ways to increase concurrent accesses:

— Increase occupancy (run more threads concurrently)

» Adjust threadblock dimensions
— To maximize occupancy at given register and smem requirements

» Reduce register count (-maxrregcount option, or __launch_bounds_)
— Modify code to process several elements per thread

38
© NVIDIA 2011

Some Experimental Data

* Increment a 64M element array
— Two accesses per thread (load then store, but they are dependent)

» Thus, each warp (32 threads) has one outstanding transaction at a time

« Tesla M2090, ECC off, theoretical bandwidth: 177 GB/s

160

140 — — .
/ / Several independent smaller
120 accesses have the same effect
/ / as one larger one.
100
GB/s 80 / ——32-bitaccess | For examPle: .
/ / Four 32-bit ~= one 128-bit

60 / / ——64-bitaccess [
40 // 128-bitaccess [
20 d

O T T T T T T T T T T T 1
0 128 256 384 512 640 768 896 1024 1152 1280 1408 1536

Threads per Multiprocessor

© NVIDIA 2011

39

Summary: GMEM Optimization

 Strive for perfect coalescing per warp
— Align starting address (may require padding)
— A warp should access within a contiguous region
— Structure of Arrays is better than Array of Structures

« Have enough concurrent accesses to saturate the bus

— Launch enough threads to maximize throughput
« Latency is hidden by switching threads (warps)

— If needed, process several elements per thread
* More concurrent loads/stores

« Try L1 and caching configurations to see which one works best

— Caching vs non-caching loads (compiler option)
— 16KB vs 48KB L1 (CUDA call)

© NVIDIA 2011

Shared Memory Optimization

41

Shared Memory

» Uses:
— Inter-thread communication within a block
— Cache data to reduce redundant global memory accesses
— Use it to improve global memory access patterns
« Fermi organization:
— 32 banks, 4-byte wide banks
— Successive 4-byte words belong to different banks
* Performance:
— 4 bytes per bank per 2 clocks per multiprocessor: 1.3 TB/s on M2090
— smem accesses are issued per 32 threads (warp)

— serialization: if n threads in a warp access different 4-byte words in the same
bank, n accesses are executed serially

— multicast: n threads access the same word in one fetch
* Could be different bytes within the same word

© NVIDIA 2011

© NVIDIA 2011

Bank Addressing Examples

 No Bank Conflicts

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

 No Bank Conflicts

Thread O
Thread 1

Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

Thread 31

© NVIDIA 2011

Bank Addressing Examples

« 2-way Bank Conflicts

Thread O
Thread 1
Thread 2
Thread 3
Thread 4

Thread 28
Thread 29
Thread 30
Thread 31

« 8-way Bank Conflicts

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6

Thread 7

Thread 31

Profiling SMEM Bank Conflicts

* Find out whether:
— Bank conflicts are occuring
— Bank conflicts significantly impact performance
* No need to optimize if they don’t
* Impact on performance is significant if:
— Kernel is limited by instruction throughput
— Shared memory bank conflicts are a significant percentage of instructions issued

» Use the profiler to get:

— Bank conflict count, instructions-issued count
» Currently bank-conflicts get overcounted for accesses greater than 32-bit words:
— Divide by 2 for 64-bit accesses (double, float2, etc.)
— Divide by 4 for 128-bit accesses (float4, etc.)

© NVIDIA 2011

Shared Memory: Avoiding Bank Conflicts

« 32x32 SMEM array

* Warp accesses a column:
— 32-way bank conflicts (threads in a warp access the same bank)

2 31
0 S
Bank O -
Bank 1 1 .
Bank 31 2

31

© NVIDIA 2011

Shared Memory: Avoiding Bank Conflicts

» Add a column for padding:
— 32x33 SMEM array
* Warp accesses a column:
— 32 different banks, no bank conflicts

~

o1 1 2 31 padding

Bank O
Bank 1 1

5 I

Bank 31 |
|

|

© NVIDIA 2011

© NVIDIA 2011

Case Study: SMEM Bank Conflicts

* One of CAM-HOMME kernels (climate simulation), fp64

 Profiler values:
— Instructions:Byte ratio, reported by profiler: 4
« Suggests kernel is instruction limited (even before adjusting for fp64 throughput)

— Instruction counts
 Executed / issued: 2,406,426 / 2,756,140
» Difference: 349,714 (12.7% of instructions issued were “replays”)

— SMEM instructions:
 Load + store: 421,785 + 95,172 = 516,957
« Bank conflicts: 674,856 (really 337,428 because of double-counting for fp64)
» S0, SMEM bank conflicts make up 12.2% of all instructions (337,428 / 2,756,140)

 Solution: pad shared memory
— Performance increased by ~15%

48

Texture and Constant Data

© NVIDIA 2011

49

Constant and Texture Data

« Constants:
— _ constant__ qualifier in declarations
— Up to 64KB
— Ideal when the same address is read by all threads in a warp (FD coefficients, etc.)
* Throughput is 4B per SM per clock
« Textures:

— Dedicated hardware for:
* Qut-of-bounds index handling (clamp or wrap-around)
« Optional interpolation (think: using fp indices for arrays)
— Linear, bilinear, trilinear
+ Optional format conversion
— {char, short, int} -> float
« Operation:
— Both textures and constants reside in global memory
— Both are read via dedicated caches

© NVIDIA 2011

Instruction Throughput and Optimization

51

© NVIDIA 2011

Kernel Execution

» Threadblocks are assigned to SMs
— Done at run-time, so don’t assume any particular order
— Once a threadblock is assigned to an SM, it stays resident until all its threads complete

* It’s not migrated to another SM
* It’s not swapped out for another threadblock

* Instructions are issued/executed per warp

— Warp = 32 consecutive threads
« Think of it as a “vector” of 32 threads
* The same instruction is issued to the entire warp

» Scheduling
— Warps are scheduled at run-time
— Hardware picks from warps that have an instruction ready to execute
» Ready = all arguments are ready
— Instruction latency is hidden by executing other warps

52

Control Flow

» Divergent branches:
— Threads within a single warp take different paths

e if-else,...
— Different execution paths within a warp are serialized
 Different warps can execute different code with no impact on
performance
* Avoid diverging within a warp
— Example with divergence:
 if (threadIdx.x > 2) {...} else {...}
» Branch granularity < warp size
— Example without divergence:
* if (threadIdx.x / WARP SIZE > 2) {...} else {...}

» Branch granularity is a whole multiple of warp size

© NVIDIA 2011

© NVIDIA 2011

Possible Performance Limiting Factors

« Raw instruction throughput
— Know the kernel instruction mix
— fp32, fp64, int, mem, transcendentals, etc. have different throughputs

» Refer to the CUDA Programming Guide / Best Practices Guide
» Can examine assembly: use cuobjdump tool provided with CUDA toolkit

— Alot of divergence can “waste” instructions

e |Instruction serialization

— Occurs when threads in a warp issue the same instruction in sequence
» As opposed to the entire warp issuing the instruction at once
» Think of it as “replaying” the same instruction for different threads in a warp
— Some causes:
» Shared memory bank conflicts
» Constant memory bank conflicts

54

Instruction Throughput: Analysis

« Compare achieved instruction throughput to HW capabilities
— Profiler reports achieved throughput as IPC (instructions per clock)
» As percentage of theoretical peak for pre-Fermi GPUs
— Peak instruction throughput is documented in the Programming Guide

» Profiler also provides peak fp32 throughput for reference (doesn’t take your instruction mix into
consideration)

* Check for serialization

— Number of replays due to serialization = difference between instructions_issued and
instructions_executed counters

— Profiler reports % of serialization metric, additional counters for smem bank conflicts
— A concern only if code is instruction-bound and serialization percentage is high

« Warp divergence
— Profiler counters: divergent_branch, branch
— Compare the two to see what percentage diverges

» However, this only counts the branches, not the rest of serialized instructions

© NVIDIA 2011

55

© NVIDIA 2011

Instruction Throughput: Optimization

 Use intrinsics where possible (__sin(), __sincos(), __exp(), etc.)
— Available for a number of math.h functions

— 2-3 bits lower precision, much higher throughput
» Refer to the CUDA Programming Guide for details

— Often a single HW instruction, whereas a non-intrinsic is a SW sequence
« Additional compiler flags that also help (select GT200-level precision):

— -ftz=true : flush denormals to 0
— -prec-div=false : faster fp division instruction sequence (some precision Loss)
— -prec-sqrt=false : faster fp sqrt instruction sequence (some precision loss)

* Make sure you do fp64 arithmetic only where you mean it:

— fp64 throughput is lower than fp32
— fp literals without an “f” suffix (34.7) are interpreted as fpé4 per C standard

56

Serialization: Optimization

* Shared memory bank conflicts:
— Covered earlier in this presentation

* Constant memory bank conflicts:
— Ensure that all threads in a warp access the same __constant__ value

— If many different values will be needed per warp:
« Use gmem or smem instead

« Warp serialization:

— Try grouping threads that take the same path
» Rearrange the data, pre-process the data
« Rearrange how threads index data (may affect memory perf)

© NVIDIA 2011

57

© NVIDIA 2011

Instruction Throughput: Summary

* Analyze:
— Check achieved instruction throughput
— Compare to HW peak (but keep instruction mix in mind)
— Check percentage of instructions due to serialization

* Optimizations:
— Intrinsics, compiler options for expensive operations

— Group threads that are likely to follow same execution path
(minimize warp divergence)

— Avoid SMEM bank conflicts (pad, rearrange data)

58

Latency Hiding

59

© NVIDIA 2011

Latency: Analysis

« Suspect unhidden latency if:
— Neither memory nor instruction throughput is close to HW theoretical rates

— Poor overlap between mem and math

* Full-kernel time is significantly larger than max{mem-only, math-only}
— Refer to SC10 or GTC10 Analysis-Driven Optimization slides for details

« Two possible causes:

— Insufficient concurrent threads per multiprocessor to hide latency
» Occupancy too low

» Too few threads in kernel launch to load the GPU
— elapsed time doesn’t change if problem size is increased (and with it the number of blocks/threads)

— Too few concurrent threadblocks per SM when using syncthreads()
« _ syncthreads() can prevent overlap between math and mem within the same threadblock

60

Simplified View of Latency and Syncs

Kernel where most math cannot be
executed until all data is loaded by

I Memory-only time the threadblock

] Math-only time

I N Full-kernel time, one large threadblock per SM

time > 61
© NVIDIA 2011

Simplified View of Latency and Syncs

Kernel where most math cannot be

executed until all data is loaded by
I Memory-only time the threadblock

] Math-only time

I N Full-kernel time, one large threadblock per SM

__ Full-kernel time, two threadblocks per SM
__ (each half the size of one large one)

time > 62
© NVIDIA 2011

© NVIDIA 2011

Latency: Optimization

* |Insufficient threads or workload:
— Increase the level of parallelism (more threads)

— If occupancy is already high but latency is not being hidden:

» Process several output elements per thread - gives more independent memory and arithmetic
instructions (which get pipelined)

e Barriers:

— Can assess impact on perf by commenting out __syncthreads()
* Incorrect result, but gives upper bound on improvement

— Try running several smaller threadblocks
« Think of it as “pipeled” threadblock execution
* In some cases that costs extra bandwidth due to halos

* Check out Vasily Volkov’s talk 2238 at GTC 2010 for a detailed treatment:
— “Better Performance at Lower Latency”

63

© NVIDIA 2011

Summary

» Keep the 3 requirements for max performance in mind:
— Sufficient parallelism
— Coalesced memory access
— Coherent (vector) execution within warps
* Determine what limits kernel performance
— Memory, arithmetic, latency
* Optimize in the order of limiter severity

— Use the profiler to determine performance impact first
* Some code modifications help here too

64

© NVIDIA 2011

Additional Resources

* Fundamenal Optimizations / Analysis-Driven Optimization
— More detailed treatment of this information, more cases studies
— SC10: http://www.nvidia.com/object/sc10_cuda_tutorial.html

— GTC10 (includes video recordings):
» http://www.gputechconf.com/page/gtc-on-demand.html#2011

* http://www.gputechconf.com/page/gtc-on-demand.html(#2012
* CUDA Best Practices Guide / CUDA Programming Guide
— Included in the docs of any CUDA toolkit
— All optimization materials apply to OpenCL and other programming models
 CUDA Webinars:
— http://developer.nvidia.com/gpu-computing-webinars

— Shorter, more focused presentations (recorded video of past talks)
* Memory optimization, local memory and register spilling, etc.

65

http://www.nvidia.com/object/sc10_cuda_tutorial.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars

© NVIDIA 2011

Questions?

66

