

PRACTICAL DEEP LEARNING EXAMPLES

Image Classification, Object Detection, Localization, Action Recognition, Scene Understanding

WHAT IS DEEP LEARNING?

IMAGE CLASSIFICATION WITH DNN

IMAGE CLASSIFICATION WITH DNNS

Tree

Cat

Dog

Training

Forward Propagation

Compute weight update to nudge from "turtle" towards "dog"

- Typical training run
 - Pick a DNN design
 - Input thousands to millions training images spanning 1,000 or more categories
 - Day to a week of computation
- Test accuracy
 - If bad: modify DNN, fix training set or update training parameters

GPUs and Deep Learning

	Neural Networks	GPUs
Inherently Parallel	✓	✓
Matrix Operations	\checkmark	✓
FLOPS	✓	√

GPUs deliver --

- same or better prediction accuracy
- faster results
- smaller footprint
- lower power

ImageNet Challenge Accuracy

NVIDIA DEEP LEARNING PLATFORM

cuDNN

- Accelerates key routines to improve performance of neural net training
 - Routines for convolution and cross-correlation as well as activation functions
 - Up to 1.8x faster on AlexNet than a baseline GPU implementation
- Integrated into all major Deep Learning frameworks: Caffe, Theano, Torch

Images Trained Per Day (Caffe AlexNet)

GPU-ACCELERATED DEEP LEARNING FRAMEWORKS

	CAFFE	TORCH	THEANO	CUDA-CONVNET2	KALDI
Domain	Deep Learning Framework	Scientific Computing Framework	Math Expression Compiler	Deep Learning Application	Speech Recognition Toolkit
cuDNN	R2	R2	R2		/ \
Multi-GPU	✓	\checkmark	\checkmark	\checkmark	✓ (nnet2)
Multi-CPU	/ \x / \	×	×	x	✓ (nnet2)
License	BSD-2	GPL	BSD	Apache 2.0	Apache 2.0
Interface(s)	Text-based definition files, Python, MATLAB	Python, Lua, MATLAB	Python	C++	C++, Shell scripts
Embedded (TK1)	\sim	\checkmark	x	A.	/ x

http://developer.nvidia.com/deeplearning

PRODUCTION PIPELINE

NVIDIA® DIGITSTM

Interactive Deep Learning GPU Training System

Dashboard

Real time monitoring

Network Visualization

NVIDIA® DIGITSTM

Interactive Deep Learning GPU Training System

Data Scientists & Researchers:

- Quickly design the best deep neural network (DNN) for your data
- Visually monitor DNN training quality in real-time
- Manage training of many DNNs in parallel on multi-GPU systems
- Open source!
- https://developer.nvidia.com/digits

Main Console

Choose your database

DIGITS WORKFLOW

CREATE YOUR DATABASE
CONFIGURE YOUR MODEL

Start Training

Choose a default network, modify one, or create your own

CREATING THE DATABASE

CREATE THE DATABASE

CREATE THE DATABASE

Create Training and Validation Set

Apply rotation, color distortion, noise to training set

CREATE THE DATABASE

CREATING THE DATABASE

Training and validation data set information

Category data information is posted

New Image Classification Model

Encoding

Select training dataset

name: "data" type: "Data" top: "data" top: "label" include { phase: TRAIN } transform_param {	Make network changes here	,
retrained model		

NETWORK CONFIGURATION

Select a standard network and start training

OR

Customize a Standard Network

NETWORK CONFIGURATION

Select a standard network and start training

OR

Customize a Standard Network

Visualize your network

New Image Classification Model

name: "AlexNet" layer { name: "data" type: "Data"		
top: "data" top: "label" include { phase: TRAIN }	Make network changes here	
transform_param {		

NETWORK CONFIGURATION

Select a standard network and start training

OR

0

Customize a Standard Network

Visualize your network

Start training

ship_type_finetune@

Download network files

Select Model

Choose File No file chosen

Show visualizations and statistics Q

■ loss (train) ■ accuracy (val) ■ loss (val)

Choose File No file chosen

Number of images use from the file

Accuracy and loss values during training

Initialized at 05:34:16 PM (1 second)

Initialized at 05:34:16 PM (1 second)

Running at 05:34:17 PM

Running at 05:34:17 PM

Train Caffe Model running -

Learning rate

TRAINING

Visualize DNN performance in real time Compare networks

Classification

COMPARE RESULTS

ship_type@

Network (train/val) Network (deploy) Raw caffe output

ship_type Done Man May 25, 03:23:53 PM

256x256 Image Type Create DB (train) 18885 Images Create DB (val) 3334 Images Encoding png

- Initialized at Mon May 25, 03:26:48 PM (1
- Running at Mon May 25, 03:26:50 PM (1
- Done at Mon May 25, 04:42:50 PM

Train Caffe Model Davis +

PRESENTATION LINEUP

- Monday
- 4 Introduction to Graph Analytics
- Tuesday
- 2 Performance Testing in Virtual Environments
- 3 Leverage GPUs for Image Processing with ENVI

- Wednesday
- 1 Accelerating FMV PED Workflows with Real-Time Image Processing
- 3 Legion: A CUDA-based Engine for Geospatial Analytics
- 4 DL Open House
- Thursday
- 1:30 Accelerating Visualization and Analytics in Socet GXP with GPUs