Monash University, NVIDIA and ARDC partner to explore the offloading of security in collaborative research applications

Monash University, NVIDIA and ARDC partner to explore the offloading of security in collaborative research applications

In Australia, NVIDIA is teaming up with Monash University and ARDC to explore the offloading of security in collaborative research applications.

Monash hosts 10 NVIDIA BlueField-2 DPUs residing in its Research Cloud, which is part of the ARDC Nectar Research Cloud, Australia’s federated research cloud funded through the National Collaborative Research Infrastructure Strategy.

This contributed blog was originally posted in MeRC and tagged Infrastructure Stories on July 8, 2021 by Steve Quenette

Monash University, NVIDIA and ARDC partner to explore the offloading of security in collaborative research applications

Collaboration in the research sector (universities) has an impact on infrastructure that is a microcosm for the future Internet. 

Why is this? Researchers are increasingly connected, increasingly participating in grand challenge problems, and increasingly reliant on technology. Problem solving for big global challenges, as distinct from fundamental research, can involve large-scale human-related data, which is sensitive and sometimes commercial-in-confidence. Researchers are rewarded to be first to discovery. One way to accelerate discovery is to be the “first to market” with disruptive technology. That is, develop the foundational research discovery tool (think software or instrument that provides the unique lens to see the solution, a “21st century microscope” so to speak). If we think of research communities as instrument designers and builders, they must then build the scientific applications that span the Internet (across local infrastructure, public cloud and edge devices). 

What is an example 21st century microscope for a mission-based problem? To prove the effectiveness of an experimental machine learning based algorithm running on an NVIDIA Jetson-connected edge device controlling a building’s battery. It’s informed by bleeding-edge economics theory, participates in a microgrid of power generators (e.g. solar), storage and consumers (buildings) at the scale of a small city, and is itself connected to the local power grid. Through the Smart Energy City project within the Net Zero Initiative we are doing just that.

A tension is observed between mission-based endeavours involving researchers from any number of organisations, and the responsibility for data governance, which ultimately resides with each researcher’s organisation. Contemporary best practices in technological and process controls adds more work to researchers and technology alike, potentially slowing research down. And yet cyber threats are an exponential reality. It cannot be ignored. How do we make it safe and easy for researchers to explore and develop instruments in this ecosystem? How do we create an environment that scales to any number of research missions? 

What is the technological and process approach that enables a globe’s worth of individual research contributions to mission-based problems that will also scale with the evolving cyber landscape?

In February, NVIDIAMonash University’s eResearch CentreMonash University’s Cyber Risk & Resilience team and the Australian Research Data Commons (ARDC), commenced a partnership to explore the role DPUs play in this microcosm. Monash now hosts ten NVIDIA BlueField-2 DPUs residing in its Research Cloud, essentially a private cloud, which itself forms part of the ARDC Nectar Research Cloud, Australia’s federated research cloud, which is funded through the National Collaborative Research Infrastructure Strategy (NCRIS). The partnership is to explore the paradigm of off-loading (what is ultimately) micro-segmentation onto DPUs, thus removing the burden of increased security from CPUs, GPUs and top-of-rack / top-of-organisation security appliances. Concurrently Monash is exploring a range of contemporary appliances, microsegmentation software and automations of research data governance.

Steve Quenette, Deputy Director of the Monash eResearch Centre and lead of this project states:

“Micro-segmenting per-research application would ultimately enable specific datasets to be controlled tightly (more appropriately firewalled) and actively & deeply monitored, as the data traverses a researcher’s computer, edge devices, safe havens, storage, clouds and HPC. We’re exploring the idea that the boundaries of data governance are micro-segmented, not the organisation or infrastructures. By offloading technology and processes to achieve security, the shadow-cost of security (as felt by the researcher, e.g. application hardening and lost processing time) is minimised, whilst increasing the transparency and controls of each organisation’s SOC. It is a win-win to all parties involved.”

Dan Maslin, Monash University Chief Information Security Officer:

“As we continue to push the boundaries of research technology, it’s important that we explore new and innovative ways that utilise bleeding edge technology to protect both our research data and underpinning infrastructure. This partnership and the exploratory use of DPUs is exciting for both Monash University and the industry more broadly.”

Carmel Walsh, Director eResearch Infrastructure & Service, ARDC:

“To support research at a national and international level requires investment in leading edge technology. The ARDC is excited to partner with the Monash eResearch Centre and NVIDIA to explore how to apply DPUs to research computing and how to scale this technology nationally to provide our Australian researchers with the competitive advantage.”

This is an example of the emerging evolution in security technology to security everywhere or distributed security. By shifting the security function as orthogonal to the application (including the operating system), the data centre (Monash in this case) can affect it’s own chosen depth introspection and enforcement, at the same rate that clouds and applications are growing.

“The transformation of the data center into the new unit of computing demands zero-trust security models that monitor all data center transactions in real time,” said Ami Badani, Vice President of Marketing at NVIDIA. “NVIDIA is collaborating with Monash University on pioneering cybersecurity breakthroughs powered by the NVIDIA Morpheus AI cybersecurity framework, which uses machine learning to anticipate threats with real-time, all-packet inspection.”

We are presently forming the team involving cloud and security office staff, and performing preliminary investigations in our test cloud. We’re expecting to communicate findings incrementally over the year.

Read full blog post at