NVIDIA GPU BOOST FOR TESLA

Application Note

DA-06767-001_v02 | January 2014
DOCUMENT CHANGE HISTORY

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Authors</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>March 28, 2013</td>
<td>GG, SM</td>
<td>Initial Release</td>
</tr>
</tbody>
</table>
| 02 | January 20, 2014| GG, SM | • Updated product name
• Added figures and a table
• Added new sections
• General updates throughout application note |

NVIDIA GPU Boost for Tesla
TABLE OF CONTENTS

Introduction ... 1
NVIDIA GPU Boost for Tesla ... 2
 NVIDIA GPU Boost for HPC Workloads ... 4
API for NVIDIA GPU Boost on Tesla .. 5
Application Behavior with NVIDIA GPU Boost for Tesla 7
 Scenario 1: User Selects Base Clock .. 7
 Scenario 2: User Selects Boost Clock 1 without Selecting Persistent Mode ... 8
 Scenario 3: User Selects Boost Clock 1 and Specifies Persistent Mode 8
 Scenario 4: User Selects Boost Clock 1 without Selecting Persistent Mode 8
 Scenario 5: User Selects Boost Clock 2 and Specifies Persistent Mode 9
NVIDIA GPU Boost and Memory Bandwidth .. 10
Best Practices for Using NVIDIA GPU Boost on Tesla K40 11
LIST OF FIGURES

Figure 1. Average Power Consumption .. 2
Figure 2. Base and Boost Clocks on Tesla K40 ... 3

LIST OF TABLES

Table 1. nvidia-smi Commands .. 5
NVIDIA GPU Boost™ is a feature available on NVIDIA® GeForce® products and NVIDIA® Tesla® products. It makes use of any power headroom to boost application performance. In the case of Tesla, the NVIDIA GPU Boost feature is customized for compute intensive workloads running on clusters. This application note is useful for anyone who wants to take advantage of the power headroom on the Tesla K40 in a server or within a workstation.

Note: Tesla K40 refers to both the workstation and server module.
The Tesla boards are designed for a specific power budget (235 W) assuming a highly optimized compute workload. HPC workloads vary in the power consumption and profile. The following chart in Figure 1 shows the average power consumption from various workloads measured on the Tesla K20X. This shows that several workloads are not using the full 235 W and hence have power headroom. NVIDIA GPU Boost for Tesla allows customers to use available power headroom to select higher graphics clocks using NVML or nvidia-smi.

Figure 1. Average Power Consumption
NVIDIA GPU Boost is available on other NVIDIA products and the implementation varies because of the customer use cases and workloads.

In the Tesla K40 there is something called the “Base Clock” and “Boost Clock(s).”

- **Base Clock:** Selected based on worst-case reference workload. All Tesla K40 boards ship at the graphics core clock set at “base clock.” By default all Tesla K40 boards will run at this clock setting.

- **Boost Clock(s):** These clocks are selected based on less power aggressive workloads. There may be more than one boost clock to provide deterministic performance for workloads that consume less than 235 W. In the case of the Tesla K40 there are two boost clocks. An end user can select one of the boost clocks using NVML or nvidia-smi. As long as the board power remains within 235 W the board will maintain the selected boost clock for the entire execution period.

![Figure 2. Base and Boost Clocks on Tesla K40](image)

NVIDIA GPU Boost works on the principle that when an end user selects a higher boost clock, all the cores run at that clock. It is unlike other implementations where under boost different cores may be running at different clock frequency.

The boost clocks for Tesla K40 have been selected assuming that the workload demands that the GPU runs at those clocks for close to 100% of the duration.
In case of Tesla K40 the clocks available to the end user are:

- **Base Clock**: 745 MHz
- **Boost Clock 1**: 810 MHz
- **Boost Clock 2**: 875 MHz

Therefore the implementation of NVIDIA GPU Boost for Tesla K40 is designed and optimized so that the performance and results under boost are deterministic.

NVIDIA GPU BOOST FOR HPC WORKLOADS

NVIDIA GPU Boost for Tesla K40 is optimized to deliver a robust and deterministic boost behavior for a wide range of HPC workloads.

Tesla K40 gives full control to end-users to select the core clock frequency that fits their workload the best. The workload may have one or more of the following characteristics.

- Problem set is spread across multiple GPUs and requires periodic synchronization.
- Problem set spread across multiple GPUs and runs independent of each other.
- Workload has “compute spikes.” For example, some portions of the workload are extremely compute intensive pushing the power higher and some portions are moderate.
- Workload is compute intensive through-out without any spikes.
- Workload requires fixed clocks and is sensitive to clocks fluctuating during the execution.
- Workload runs in a cluster where all GPUs need to start, finish, and run at the same clocks.
- Workload or end user requires predictable performance and repeatable results.
- Datacenter is used to run different types of workload at different hours in a day to better manage the power consumption.
- Some boards in a cluster have access to better cooling than others.

By default the Tesla K40 ships with the core clock set to the base clock. HPC workloads can have one or more characteristics as described. When selecting one of the supported boost clocks a good strategy is to characterize the workload with the available boost clocks. For example, DGEMM/Linpack are extremely demanding on power. Therefore, the “base clock” may be the correct choice when running Linpack. Some workloads in life sciences, manufacturing, CFD, CAD, etc., may have power headroom and can take advantage of one of the boost clocks.
The Tesla K40 gives full control to end-users to select the core clock frequency via NVML or `nvidia-smi`. NVML is a C-based API for monitoring and managing the various states of Tesla products. It provides a direct access to submit queries and commands via `nvidia-smi`. NVML documentation is available at https://developer.nvidia.com/nvidia-management-library-nvml.

Table 1 gives a summary of the `nvidia-smi` commands for using NVIDIA GPU Boost on Tesla.

Table 1. nvidia-smi Commands

<table>
<thead>
<tr>
<th>Usage</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>View the clocks the Tesla board supports</td>
<td><code>nvidia-smi -q -d SUPPORTED_CLOCKS</code></td>
</tr>
<tr>
<td>Set one of the supported clocks</td>
<td><code>nvidia-smi -ac <MEM clock, Graphics clock></code></td>
</tr>
<tr>
<td>Make the clock settings persistent across driver unload</td>
<td><code>nvidia-smi -pm 1</code></td>
</tr>
<tr>
<td>Make the clock settings revert to base clocks after driver unloads</td>
<td><code>nvidia-smi -pm 0</code></td>
</tr>
<tr>
<td>(or turn off the persistent mode)</td>
<td></td>
</tr>
<tr>
<td>To view the clock in use, use the command</td>
<td><code>nvidia-smi -q -d CLOCK</code></td>
</tr>
<tr>
<td>To reset clocks back to the base clock (as specified in the board</td>
<td><code>nvidia-smi -rac</code></td>
</tr>
<tr>
<td>specification)</td>
<td></td>
</tr>
<tr>
<td>To allow “non-root” access to change graphics clock</td>
<td><code>nvidia-smi -acp 0</code></td>
</tr>
</tbody>
</table>

When using non-default applications clocks, driver persistence mode should be enabled. Persistence mode ensures that the driver stays loaded even when no NVIDIA® CUDA® or X applications are running on the GPU. This maintains current state, including
requested applications clocks. If persistence mode is not enabled, and no applications are using the GPU, the driver will unload and any current user settings will revert back to default for the next application. To enable persistence mode run `sudo nvidia-smi -pm 1`.

The driver will attempt to maintain requested applications clocks whenever a CUDA context is running on the GPU. However, if no contexts are running the GPU will revert back to idle clocks to save power and will stay there until the next context is created. Thus, if the GPU is not busy, you may see idle current clocks even though requested applications clocks are much higher.

Note: By default changing the application clocks requires root access. If the user does not have root access, the user can request his or her cluster manager to allow non-root control over application clocks. Once changed, this setting will persist for the life of the driver before reverting back to root-only defaults. Persistence mode should always be enabled whenever changing application clocks, or enabling non-root permissions to do so.
APPLICATION BEHAVIOR WITH NVIDIA GPU BOOST FOR TESLA

In the previous sections we learned about various types of application characteristics and the APIs to use. Let's take a look at a few scenarios to explain what an end user might see when one of the boost clocks are selected on the Tesla K40.

It's highly likely that the application exhibits a combination of those during its entire execution period. The following scenarios can serve as a reference to understand the application behavior with NVIDIA GPU Boost on the Tesla K40.

An important point to remember is that no matter which clocks the end user selects, if at any time the power monitoring algorithm detects that the application may exceed the 235 W, the GPU comes down to a lower clock level as a precaution. Once the power falls below 235 W the GPU will raise its core clock to the selected clock. This happens automatically and the Tesla K40 does have a few clock levels below the base clock to handle any power digressions.

SCENARIO 1: USER SELECTS BASE CLOCK

The GPU will run at the base clock for the entire duration. After completion, the next job will also run at the same base clock. As long as the power does not exceed 235 W, the GPU will run at the base clock. Even if there is power headroom, the GPU will not select the boost clock automatically. This is by design and well suited for workloads that may be running on multiple GPUs and require all GPUs to run in-lock step. If during the run the board starts exceeding 235 W, the power monitoring algorithm may lower the GPU clock for a brief period as a precaution and bring it back up to the base clock once the power spike comes down.
SCENARIO 2: USER SELECTIONS BOOST CLOCK 1 WITHOUT SELECTING PERSISTENT MODE

The GPU will run at Boost Clock1 for the entire duration of the workload. As long as the power does not exceed 235 W, the GPU will run at Boost Clock1. Even if there is power headroom, the GPU will not select Boost Clock2 automatically. This is by design and well suited for workloads that may be running on multiple GPUs and require all GPUs to run in lock step at Boost Clock1.

If during the run the board starts exceeding 235 W, the power monitoring algorithm may lower the GPU clock for a brief period as a precaution and bring it back up to Boost Clock1 once the power spike comes down. After completion when the driver unloads, the GPU will revert back to the base clock.

SCENARIO 3: USER SELECTS BOOST CLOCK 1 AND SPECIFIES PERSISTENT MODE

The GPU will run at Boost Clock1 for the entire duration of the workload. After completion when the driver unloads, the GPU will start the next job also at Boost Clock 1. In this scenario the GPU behaves as if it has to always run at Boost Clock1 unless the user selects a different clock or removes the persistent option. As long as the power does not exceed 235 W, the GPU will run at Boost Clock 1. Even if there is power headroom, the GPU will not select Boost Clock2 automatically.

SCENARIO 4: USER SELECTS BOOST CLOCK 1 WITHOUT SELECTING PERSISTENT MODE

The GPU will run at the Boost Clock 2 for the entire duration of the workload. As long as the power does not exceed 235 W, the GPU will run at Boost Clock1. This is by design and well suited for workloads that may be running on multiple GPUs and require all GPUs to run in lock step at Boost Clock 2.

If during the run the board starts exceeding 235 W, the power monitoring algorithm may lower the GPU clock for a brief period as a precaution and bring it back up to Boost Clock 2 once the power spike comes down. After completion when the driver unloads, the GPU will revert back to the base clock.
SCENARIO 5: USER SELECTS BOOST CLOCK 2 AND SPECIFIES PERSISTENT MODE

The GPU will run at Boost Clock 2 for the entire duration of the workload. After completion when the driver unloads, the GPU will start the next job also at Boost Clock 2. In this scenario the GPU behaves as if it has to always run at Boost Clock 2 unless the end user selects a different clock or removes the persistent option. As long as the power does not exceed 235 W, the GPU will run at Boost Clock 2. If during the run the board starts exceeding 235 W, the power monitoring algorithm may lower the GPU clock for a brief period as a precaution and bring it back up to Boost Clock 2 once the power spike comes down.
In the Tesla K40, the NVIDIA GPU Boost capability allows end users to specify the boost clock which is just the core clock. The memory clock remains at 3 GHz. However, selecting higher boost clocks does improve the effective memory bandwidth utilization for workloads that are sensitive to memory bandwidth. With higher boost clocks some workloads may even see improved PCIe transfer rates. Therefore, NVIDIA GPU Boost on the Tesla K40 helps workloads which are sensitive to core clocks, power headroom and also helps workloads that may be more sensitive to memory bandwidth than core clocks.
BEST PRACTICES FOR USING NVIDIA GPU BOOST ON TESLA K40

To figure out the right boost clock setting the end-user may need to try different clocks.
- Out of the box, the end user will get the Tesla K40 running at the base clock. The end user should try the base clock and check the power draw using the NVML or nvidia-smi query. If the power draw is less than 235 W, the end user can select a higher boost clock and re-run the application. This may require a few iterations and experimentation to see what boost clock works the best for a specific workload.
- If the end user is sharing the Tesla K40 with several others in a cluster, the end user may need root access to try and set different clocks. In that case, the end user can request the IT manager to use the following command to grant permission to the end user to set different boost clocks:
  ```
nvidia-smi -acp 0
  ```
- If the workload runs on multiple GPUs and is sensitive to all GPUs running at the same clock, then the user may need to try out which particular clock works best for all GPUs. It could be the base clock, Boost Clock 1, or Boost Clock 2 depending on how aggressive and stringent the workload is.
- If the workload is such that each GPU works independently on a problem set and there’s little interaction or collaboration between GPUs, then selecting the highest boost clock may be a good option.
Notice
The information provided in this specification is believed to be accurate and reliable as of the date provided. However, NVIDIA Corporation (“NVIDIA”) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This publication supersedes and replaces all other specifications for the product that may have been previously supplied.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and other changes to this specification, at any time and/or to discontinue any product or service without notice. Customer should obtain the latest relevant specification before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer. NVIDIA hereby expressly objects to applying any customer general terms and conditions with regard to the purchase of the NVIDIA product referenced in this specification.

NVIDIA products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on these specifications will be suitable for any specified use without further testing or modification. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit for the application planned by customer and to do the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this specification. NVIDIA does not accept any liability related to any default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this specification, or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this specification. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA. Reproduction of information in this specification is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all associated conditions, limitations, and notices.

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the NVIDIA terms and conditions of sale for the product.

Trademarks
NVIDIA, the NVIDIA logo, CUDA, Kepler, NVIDIA GPU Boost, and Tesla are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2013, 2014 NVIDIA Corporation. All rights reserved.